Converted CoreML Model Zoo.

Overview

CoreML-Models

Converted CoreML Model Zoo.

CoreML is a machine learning framework by Apple. If you are iOS developer, you can easly use machine learning models in your Xcode project.

How to use

Take a look this model zoo, and if you found the CoreML model you want, download the model from google drive link and bundle it in your project. Or if the model have sample project link, try it and see how to use the model in the project. You are free to do or not.

Section Link

How to get the model

You can get the model converted to CoreML format from the link of Google drive. See the section below for how to use it in Xcode. The license for each model conforms to the license for the original project.

Image Classifier

Efficientnet

スクリーンショット 2021-12-27 6 34 43

Google Drive Link Size Dataset Original Project License
Efficientnetb0 22.7 MB ImageNet TensorFlowHub Apache2.0

Efficientnetv2

スクリーンショット 2021-12-31 4 30 22

Google Drive Link Size Dataset Original Project License Year
Efficientnetv2 85.8 MB ImageNet Google/autoML Apache2.0 2021

VisionTransformer

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.

スクリーンショット 2022-01-07 10 37 05

Google Drive Link Size Dataset Original Project License Year
VisionTransformer-B16 347.5 MB ImageNet google-research/vision_transformer Apache2.0 2021

Conformer

Local Features Coupling Global Representations for Visual Recognition.

スクリーンショット 2022-01-07 11 34 33

Google Drive Link Size Dataset Original Project License Year
Conformer-tiny-p16 94.1 MB ImageNet pengzhiliang/Conformer Apache2.0 2021

DeiT

Data-efficient Image Transformers

スクリーンショット 2022-01-07 11 50 25

Google Drive Link Size Dataset Original Project License Year
DeiT-base384 350.5 MB ImageNet facebookresearch/deit Apache2.0 2021

RepVGG

Making VGG-style ConvNets Great Again

スクリーンショット 2022-01-08 5 00 53

Google Drive Link Size Dataset Original Project License Year
RepVGG-A0 33.3 MB ImageNet DingXiaoH/RepVGG MIT 2021

Object Detection

YOLOv5s

スクリーンショット 2021-12-29 6 17 08

Google Drive Link Size Output Original Project License Note Sample Project
YOLOv5s 29.3MB Confidence(MultiArray (Double 0 × 80)), Coordinates (MultiArray (Double 0 × 4)) ultralytics/yolov5 GNU Non Maximum Suppression has been added. CoreML-YOLOv5

Segmentation

U2Net

Google Drive Link Size Output Original Project License
U2Net 175.9 MB Image(GRAYSCALE 320 × 320) xuebinqin/U-2-Net Apache
U2Netp 4.6 MB Image(GRAYSCALE 320 × 320) xuebinqin/U-2-Net Apache

face-Parsing

Google Drive Link Size Output Original Project License Sample Project
face-Parsing 53.2 MB MultiArray(1 x 512 × 512) zllrunning/face-parsing.PyTorch MIT CoreML-face-parsing

Segformer

Simple and Efficient Design for Semantic Segmentation with Transformers

Google Drive Link Size Output Original Project License year
SegFormer_mit-b0_1024x1024_cityscapes 14.9 MB MultiArray(512 × 1024) NVlabs/SegFormer NVIDIA 2021

BiSeNetV2

Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation

Google Drive Link Size Output Original Project License year
BiSeNetV2_1024x1024_cityscapes 12.8 MB MultiArray ycszen/BiSeNet Apache2.0 2021

Super Resolution

Real ESRGAN

Google Drive Link Size Output Original Project License year
Real ESRGAN 66.9 MB Image(RGB 1280x1280) xinntao/Real-ESRGAN BSD 3-Clause License 2021

BSRGAN

Google Drive Link Size Output Original Project License year
BSRGAN 66.9 MB Image(RGB 2048x2048) cszn/BSRGAN 2021

Low Light Enhancement

StableLLVE

Learning Temporal Consistency for Low Light Video Enhancement from Single Images.

Google Drive Link Size Output Original Project License Year
StableLLVE 17.3 MB Image(RGB 512x512) zkawfanx/StableLLVE MIT 2021

Image Restoration

MPRNet

Multi-Stage Progressive Image Restoration.

Debluring

Denoising

Deraining

Google Drive Link Size Output Original Project License Year
MPRNetDebluring 137.1 MB Image(RGB 512x512) swz30/MPRNet MIT 2021
MPRNetDeNoising 108 MB Image(RGB 512x512) swz30/MPRNet MIT 2021
MPRNetDeraining 24.5 MB Image(RGB 512x512) swz30/MPRNet MIT 2021

StableLLVE

Learning Temporal Consistency for Low Light Video Enhancement from Single Images.

Google Drive Link Size Output Original Project License Year
StableLLVE 17.3 MB Image(RGB 512x512) zkawfanx/StableLLVE ACADEMIC PUBLIC LICENSE 2021

Image Generation

MobileStyleGAN

Google Drive Link Size Output Original Project License Sample Project
MobileStyleGAN 38.6MB Image(Color 1024 × 1024) bes-dev/MobileStyleGAN.pytorch Nvidia Source Code License-NC CoreML-StyleGAN

DCGAN

Google Drive Link Size Output Original Project
DCGAN  9.2MB MultiArray TensorFlowCore

Image2Image

Anime2Sketch

Google Drive Link Size Output Original Project License Usage
Anime2Sketch 217.7MB Image(Color 512 × 512) Mukosame/Anime2Sketch MIT Drop an image to preview

AnimeGAN2Face_Paint_512_v2

Google Drive Link Size Output Original Project
AnimeGAN2Face_Paint_512_v2 8.6MB Image(Color 512 × 512) bryandlee/animegan2-pytorch

Photo2Cartoon

Google Drive Link Size Output Original Project License Note
Photo2Cartoon 15.2 MB Image(Color 256 × 256) minivision-ai/photo2cartoon MIT The output is little bit different from the original model. It cause some operations were converted replaced manually.

AnimeGANv2_Hayao

Google Drive Link Size Output Original Project
AnimeGANv2_Hayao  8.7MB Image(256 x 256) TachibanaYoshino/AnimeGANv2

AnimeGANv2_Paprika

Google Drive Link Size Output Original Project
AnimeGANv2_Paprika  8.7MB Image(256 x 256) TachibanaYoshino/AnimeGANv2

WarpGAN Caricature

Google Drive Link Size Output Original Project
WarpGAN Caricature  35.5MB Image(256 x 256) seasonSH/WarpGAN

UGATIT_selfie2anime

スクリーンショット 2021-12-27 8 18 33 スクリーンショット 2021-12-27 8 28 11

Google Drive Link Size Output Original Project
UGATIT_selfie2anime 266.2MB(quantized) Image(256x256) taki0112/UGATIT

CartoonGAN

Google Drive Link Size Output Original Project
CartoonGAN_Shinkai  44.6MB MultiArray mnicnc404/CartoonGan-tensorflow
CartoonGAN_Hayao  44.6MB MultiArray mnicnc404/CartoonGan-tensorflow
CartoonGAN_Hosoda  44.6MB MultiArray mnicnc404/CartoonGan-tensorflow
CartoonGAN_Paprika  44.6MB MultiArray mnicnc404/CartoonGan-tensorflow

How to use in a xcode project.

Option 1,implement Vision request.


import Vision
lazy var coreMLRequest:VNCoreMLRequest = {
   let model = try! VNCoreMLModel(for: modelname().model)
   let request = VNCoreMLRequest(model: model, completionHandler: self.coreMLCompletionHandler)
   return request
   }()

let handler = VNImageRequestHandler(ciImage: ciimage,options: [:])
   DispatchQueue.global(qos: .userInitiated).async {
   try? handler.perform([coreMLRequest])
}

If the model has Image type output:

let result = request?.results?.first as! VNPixelBufferObservation
let uiimage = UIImage(ciImage: CIImage(cvPixelBuffer: result.pixelBuffer))

Else the model has Multiarray type output:

For visualizing multiArray as image, Mr. Hollance’s “CoreML Helpers” are very convenient. CoreML Helpers

Converting from MultiArray to Image with CoreML Helpers.

func coreMLCompletionHandler(request:VNRequest?、error:Error?){
   let = coreMLRequest.results?.first as!VNCoreMLFeatureValueObservation
   let multiArray = result.featureValue.multiArrayValue
   let cgimage = multiArray?.cgImage(min:-1、max:1、channel:nil)

Option 2,Use CoreGANContainer. You can use models with dragging&dropping into the container project.

Make the model lighter

You can make the model size lighter with Quantization if you want. https://coremltools.readme.io/docs/quantization

The lower the number of bits, more the chances of degrading the model accuracy. The loss in accuracy varies with the model.

import coremltools as ct
from coremltools.models.neural_network import quantization_utils

# load full precision model
model_fp32 = ct.models.MLModel('model.mlmodel')

model_fp16 = quantization_utils.quantize_weights(model_fp32, nbits=16)
# nbits can be 16(half size model), 8(1/4), 4(1/8), 2, 1
quantized sample (U2Net)
InputImage / nbits=32(original) / nbits=16 / nbits=8 / nbits=4

Thanks

Cover image was taken from Ghibli free images.

On YOLOv5 convertion, dbsystel/yolov5-coreml-tools give me the super inteligent convert script.

And all of original projects

Auther

Daisuke Majima Freelance engineer. iOS/MachineLearning/AR I can work on mobile ML projects and AR project. Feel free to contact: [email protected]

GitHub Twitter Medium

Comments
  • AnimeGANv2 to CoreML

    AnimeGANv2 to CoreML

    Hi, thanks for the great work!

    I'm trying to convert the AnimeGANv2 Shinkai.pb model to CoreML, and I've got some questions.

    1. Did you use the check points to generate a .pb file first, maybe using this script then convert it to coreml using coremltools?
    2. In coremltools, should I use ct.ImageType(shape=(1, 256, 256, 3)) as input format of the converter?

    Here's my converter code:

    image_inputs = ct.ImageType(shape=(1, 256, 256, 3))
    mlmodel = ct.convert('./Shinkai_53.pb', inputs=[image_inputs],  source='tensorflow')
    mlmodel.save('./output.mlmodel')
    

    And then I use:

    import coremltools.proto.FeatureTypes_pb2 as ft
    spec = ct.utils.load_spec("output.mlmodel")
    output = spec.description.output[0]
    output.type.imageType.colorSpace = ft.ImageFeatureType.RGB
    output.type.imageType.height = 256
    output.type.imageType.width = 256
    ct.utils.save_spec(spec, "new.mlmodel")
    

    to convert the output format to Image. After I drag the new mlmodel to Xcode, and preview the model with an image, the stylized image can't be generated. It seems to be loading forever.

    screenshot

    Do u have a cue on what's going wrong? Or could u please tell me how u convert the AnimeGANv2 models? Again, thanks for your great work. Really appreciate it.

    opened by ManluZhang 17
  • Could you please provide the workflow of generating the coreML Model for RealESRGAN?

    Could you please provide the workflow of generating the coreML Model for RealESRGAN?

    Hi: Thank you for the great work! Can you please provide the code for converting the RealESRGAN model to CoreML Model?

    I tried to build by myself but apparently the output is wrong.

    import coremltools as ct
    import torch
    from basicsr.archs.rrdbnet_arch import RRDBNet
    import coremltools.proto.FeatureTypes_pb2 as ft
    
    example_input = torch.rand(1, 3, 256, 256)
    example_output = torch.rand(1, 3, 1024, 1024)
    model_path = "/Users/vaida/Downloads/Safari download/RealESRGAN_x4plus.pth"
    
    model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
    loadnet = torch.load(model_path, map_location=torch.device('cpu'))
    # prefer to use params_ema
    if 'params_ema' in loadnet:
        keyname = 'params_ema'
    else:
        keyname = 'params'
    model.load_state_dict(loadnet[keyname], strict=True)
    
    traced_model = torch.jit.trace(model, example_input)
    
    image_input = ct.ImageType(name="input", shape=example_input.shape)
    image_output = ct.ImageType(name="output", shape=example_output.shape)
    
    
    mlmodel = ct.convert(
    	traced_model,
    	source = "pytorch",
    	inputs = [image_input]
    )
    
    spec = mlmodel.get_spec()
    
    ct.utils.rename_feature(spec, "var_4053", "image")
    output = spec.description.output[0]
    output.name = "image"
    
    output.type.imageType.colorSpace = ft.ImageFeatureType.ColorSpace.Value('RGB')
    output.type.imageType.width = 1024
    output.type.imageType.height = 1024
    
    mlmodel = ct.models.MLModel(spec)
    mlmodel.save("newmodel.mlpackage")
    
    Screen Shot 2022-07-26 at 5 49 53 PM
    opened by Vaida12345 7
  • UGATIT Core ML model always produce black image in preview

    UGATIT Core ML model always produce black image in preview

    Thanks for this great repo and all the work you have done! I tested this model with several images in preview of Xcode 13.2.1. It always produce black image. https://drive.google.com/file/d/1o15OO0Kn0tq79fFkmBm3PES93IRQOxB-/view?usp=sharing

    opened by ozgurshn 4
  • IS-Net model never stops processing

    IS-Net model never stops processing

    Hi, thanks for converting IS-Net models to Core ML. As I tried with Xcode 13.4.1 mlmodel preview function, both two models process forever and never return results. Could you please check it?

    opened by ozgurshn 3
  • (Info) I used your script to convert the model and used it in my APP.

    (Info) I used your script to convert the model and used it in my APP.

    I am writing here to say thanks. I am new to iOS development, and just recently launched my app PixAI.

    I used your scripts for A-ESRGAN and MM-RealSR conversion , the process was very smooth and it saved me a lot of time.

    Best regards.

    opened by BIGPPWONG 2
  • nanodet model conerted from pytorch to coreml problem

    nanodet model conerted from pytorch to coreml problem

    Hi, I converted a object detection model from pytorch to coreml with the code

    def main(config, model_path, output_path, input_shape=(320, 320)):
        logger = Logger(-1, config.save_dir, False)
        model = build_model(config.model)
        checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
        load_model_weight(model, checkpoint, logger)
    
        dummy_input = torch.autograd.Variable(
            torch.randn(1, 3, input_shape[0], input_shape[1])
        )
    
        traced_model = torch.jit.trace(model, dummy_input)
    
        logging.info("convert coreml start.")
        core_model = ct.convert(
            traced_model,
            inputs=[ct.ImageType(shape=dummy_input.shape, name='input', scale=0.017429, bias=(-103.53 * 0.017429, -116.28 * 0.017507, -123.675 * 0.017125))],
            outputs=[ct.TensorType(name="output")],
            debug=True
        )
        core_model.save(output_path)
        logging.info("finish convert coreml.")
    

    the infer code with nms

    image = Image.open(img_path).resize((320, 320)).convert('RGB')
    model = ct.models.MLModel(mlmodel_path)
    preds = model.predict({'input': image})
    #post-process nms for preds
    

    and the coreml result seems not correct as below the pytorch results image the coreml results image

    could you please give me some advice about hot to get a correct coreml model, and it is so much better if you can convert the model for me if it is convenient, many thanks.

    opened by minushuang 2
  • How to set output tensor type as Image Type?

    How to set output tensor type as Image Type?

    Dear author: I found you can set both the input and output type in Super resolution project to Image type in coreml. Thus it could use preview function in xcode very easily. However, I can not find any ways to set the output multiarray tensor as image type. The online resouce only give details on how to set input as image type. None of those tell how to set output. Thank you.

    opened by dragen1860 2
  • Procedure for exporting yolov5?

    Procedure for exporting yolov5?

    Hi @john-rocky:

    Thanks so much for this repo. I wondered if you could describe how you went about exporting the yolov5s model to use CoreML?

    I have tried this repeatedly on the most recent version of the yolov5 repo.

    export.py --weights yolov5s.pt --include coreml to get the default values but whenever I try to import the resulting yolov5s.mlmodel into Xcode, the preview panel does not render and if I try to deploy it into an iOS app like this: https://github.com/shu223/MLModelCamera, it fails to function.

    When I downloaded your yolov5s.mlmodel file, however Xcode was happy and it worked fine in MLModelCamera.

    I'm running macOS v12.3.1 (Monterey), on a 2019 Intel MacBook Pro. Any thoughts you might have on why this is failing would be most welcome.

    opened by titanium-cranium 1
  • GFPGAN fails on ANE

    GFPGAN fails on ANE

    GFPGAN fails to load on ANE w/ CoreML, runs CPU only.

    2022-09-09 00:46:25.563463-0700 CoreML Workbench[7881:699189] [espresso] [Espresso::handle_ex_plan] exception=ANECF error: ANECCompile(/Library/Caches/com.apple.aned/tmp/com.***.CoreML-Workbench/6E5190711B5E7CF18E3503087B04E28C40B3367120EBE1F811A6E081F667851C/D1A3E180F5A89B0B922655B966D949D288EC451818F77B38B6EC76EBA01859D8/) FAILED: err=(
        CompilationFailure
    )
    2022-09-09 00:46:25.564051-0700 CoreML Workbench[7881:699189] [coreml] Error plan build: -1.
    2022-09-09 00:46:25.578371-0700 CoreML Workbench[7881:699189] [client] doUnloadModel:options:qos:error:: nil _ANEModel
    2022-09-09 00:46:25.578522-0700 CoreML Workbench[7881:699189] [espresso] ANECF error:
    

    Can you please share your convert script and how you converted it to coreml?

    opened by yousifa 0
  • Can you please create CoreML model for ISNET from new updated isent-general-use.pth

    Can you please create CoreML model for ISNET from new updated isent-general-use.pth

    Hi, They appear to have updated their ISNET model for general use. https://github.com/xuebinqin/DIS

    I really want to wait until V2, but they say it will take months.

    opened by daisymind 5
  • Yolov7 export to CoreML crashing

    Yolov7 export to CoreML crashing

    Yolov7 trained with 1280 x 1280 images (pertained weights / model used: yolov7-d6) Trained with 5 custom labels. Inference runs fine, I added --img-size 1280 to the detect command: !python detect.py --weights my_custom_weights.pt --conf 0.25 --img-size 1280 --source inference/images/my_image.jpg

    I updated classLabels[] to my 5 labels (removing the rest) I added --img-size 1280 to the export command ie !python export.py --img-size 1280 --weight my_custom_weights.pt

    but on the last cell, output is:

    IndexError Traceback (most recent call last) in () 1 # run the functions to add decode layer and NMS to the model. ----> 2 addExportLayerToCoreml(builder) 3 nmsSpec = createNmsModelSpec(builder.spec) 4 combineModelsAndExport(builder.spec, nmsSpec, f"big_data_best.mlmodel") # The model will be saved in this path.

    in addExportLayerToCoreml(builder) 45 f"{outputName}_multiplied_xy_by_two"], output_name=f"{outputName}subtracted_0_5_from_xy", mode="ADD", alpha=-0.5) 46 grid = make_grid( ---> 47 featureMapDimensions[i], featureMapDimensions[i]).numpy() 48 # x,y * 2 - 0.5 + grid[i] 49 builder.add_bias(name=f"add_grid_from_xy{outputName}", input_name=f"{outputName}_subtracted_0_5_from_xy",

    IndexError: list index out of range


    I tried changing cell 8:

    featureMapDimensions = [640 // stride for stride in strides] to featureMapDimensions = [1280 // stride for stride in strides]

    as well as: builder.add_scale(name=f"normalize_coordinates_{outputName}", input_name=f"{outputName}_raw_coordinates", output_name=f"{outputName}raw_normalized_coordinates", W=torch.tensor([1 / 640]).numpy(), b=0, has_bias=False) to builder.add_scale(name=f"normalize_coordinates{outputName}", input_name=f"{outputName}_raw_coordinates", output_name=f"{outputName}_raw_normalized_coordinates", W=torch.tensor([1 / 1280]).numpy(), b=0, has_bias=False)

    neither attempt worked.

    Also, Yolov7 export.py CoreML was recently updated. I have previously exported a 1280 x 1280 image size Yolov5 custom trained model to Core ML using this repo.

    Any thoughts or ideas would be greatly appreciated!!

    opened by Mercury-ML 4
Owner
MLBoy
Machine Learning on Mobile Device. iOS, CoreML, Tensorflow, Pytorch. Freelance Engineer.
MLBoy
TextDetection-CoreML - This project is Text Detection on iOS using Vision built-in model

This project is Text Detection on iOS using Vision built-in model. If you are interested in iOS + Machine Learning, visit here yo

tucan9389 61 Nov 17, 2022
ImageClassification - Usage The MobileNetv2 CoreML Model with StoryBoard

Image Classification with The MobileNetV2 MobileNetV2: Inverted Residuals and Li

Hamit SEYREK 0 Jun 25, 2022
Gloth - Generates a CoreML Word Tagger Model trained on interactive fiction commands

Gloth Gloth: Fold dough 83 times Generates a CoreML Word Tagger Model trained on

Chris Sessions 0 Feb 12, 2022
Real-Time image recognition for iOS with Vision(CoreML) and InceptionV3

Kesan-ML-iOS Real-Time image recognition for iOS with CoreML and InceptionV3  Test Flight Description Real-Time image recognition Integrating app wit

Ikmal Azman 3 Jun 26, 2022
PyTorch to CoreML: Writing custom layers with Metal

pytorch-coreml-custom-layer-example PyTorch to CoreML: Writing custom layers with Metal Convert PyTorch model cd Convert python3 -m pip install -r req

Aleksandr Ovechko 7 Sep 29, 2022
Convert Torch7 models into Apple CoreML format

Convert Torch7 models into Apple CoreML format. Short tutorial This tool helps convert Torch7 models into Apple CoreML format which can then be run on

Prisma Labs 377 Nov 11, 2022
Holistically-Nested Edge Detection (HED) using CoreML and Swift

HED-CoreML Holistically-Nested Edge Detection (HED) using CoreML and Swift This is the repo for tutorial, that contains an example application that ru

Andrey Volodin 101 Dec 25, 2022
A CoreML models that detects nudity in a picture

Nudity Detection for CoreML Description This is the OpenNSFW dataset implemented in Apple's new framework called CoreML. The OpenNSFW dataset can pred

Philipp Gabriel 99 Oct 13, 2022
Predict handwritten digits with CoreML

MNIST for CoreML (CNN) Description This is the MNIST dataset implemented in Apple's new framework CoreML. The MNIST dataset can predict handwritten (d

Philipp Gabriel 63 Nov 17, 2022
The MobileNet neural network using Apple's new CoreML framework

MobileNet with CoreML This is the MobileNet neural network architecture from the paper MobileNets: Efficient Convolutional Neural Networks for Mobile

Matthijs Hollemans 698 Dec 4, 2022
Train a ML Model to detect faces. (Image classifier)

face-recognition-match Train a CoreML Model to detect faces in IOS. (Image classifier) Requeriments conda create --name face_recog python=3.6 conda ac

Jose Garfias Lopez 0 Dec 24, 2021
Swift framework for document classification using a Core ML model.

DocumentClassifier Overview DocumentClassifier is a Swift framework for classifying documents into one of five categories (Business, Entertainment, Po

Todd Kramer 40 Nov 15, 2022
This project is Text Recognition using Firebase built-in model on iOS

TextRecognition-MLKit This project is Text Recognition using Firebase built-in model on iOS. If you are interested in iOS + Machine Learning, visit he

tucan9389 80 Nov 17, 2022
CoreML-Face-Parsing - how to use face-parsing CoreML model in iOS

CoreML-Face-Parsing The simple sample how to use face-parsing CoreML model in iO

MLBoy 6 Oct 25, 2022
CoreMLSample - CoreML Example for in app model and download model

CoreMLSample Sample for CoreML This project is CoreML Example for in app model a

Kim Seonghun 2 Aug 31, 2022
A clean and lightweight progress HUD based on SVProgressHUD, converted to Swift with the help of Swiftify.

IHProgressHUD IHProgressHUD is a clean and easy-to-use HUD meant to display the progress of an ongoing task on iOS and tvOS. IHProgressHUD is based on

Swiftify 202 Dec 22, 2022
A fast, convenient and nonintrusive conversion framework between JSON and model. Your model class doesn't need to extend any base class. You don't need to modify any model file.

MJExtension A fast, convenient and nonintrusive conversion framework between JSON and model. 转换速度快、使用简单方便的字典转模型框架 ?? ✍??Release Notes: more details Co

M了个J 8.5k Jan 3, 2023
A CoreML model which classifies images of food

Food101 for CoreML Description This is the Food101 dataset implemented in Apple's new framework called CoreML. The Food101 dataset can predict foods f

Philipp Gabriel 133 Nov 17, 2022
An example of CoreML using a pre-trained VGG16 model

CoreMLExample In this example we use AVFoundation to continuously get image data from the back camera, and try to detect the dominant objects present

Aleph Retamal 34 Apr 22, 2022
TextDetection-CoreML - This project is Text Detection on iOS using Vision built-in model

This project is Text Detection on iOS using Vision built-in model. If you are interested in iOS + Machine Learning, visit here yo

tucan9389 61 Nov 17, 2022