πŸ“– Design Patterns implemented in Swift 5.0

Overview

Design Patterns implemented in Swift 5.0

A short cheat-sheet with Xcode 10.2 Playground (Design-Patterns.playground.zip).

πŸ‡¨πŸ‡³ δΈ­ζ–‡η‰ˆ

πŸ‘· Project started by: @nsmeme (Oktawian Chojnacki)

πŸ‘· δΈ­ζ–‡η‰ˆη”± @binglogo (棒棒彬) 整理翻译。

πŸš€ How to generate README, Playground and zip from source: GENERATE.md

print("Welcome!")

Table of Contents

Behavioral Creational Structural
🐝 Chain Of Responsibility 🌰 Abstract Factory πŸ”Œ Adapter
πŸ‘« Command πŸ‘· Builder πŸŒ‰ Bridge
🎢 Interpreter 🏭 Factory Method 🌿 Composite
🍫 Iterator πŸ”‚ Monostate 🍧 Decorator
πŸ’ Mediator πŸƒ Prototype 🎁 FaΓ§ade
πŸ’Ύ Memento πŸ’ Singleton πŸƒ Flyweight
πŸ‘“ Observer β˜” Protection Proxy
πŸ‰ State 🍬 Virtual Proxy
πŸ’‘ Strategy
πŸƒ Visitor
πŸ“ Template Method

Behavioral

In software engineering, behavioral design patterns are design patterns that identify common communication patterns between objects and realize these patterns. By doing so, these patterns increase flexibility in carrying out this communication.

Source: wikipedia.org

🐝 Chain Of Responsibility

The chain of responsibility pattern is used to process varied requests, each of which may be dealt with by a different handler.

Example:

protocol Withdrawing {
    func withdraw(amount: Int) -> Bool
}

final class MoneyPile: Withdrawing {

    let value: Int
    var quantity: Int
    var next: Withdrawing?

    init(value: Int, quantity: Int, next: Withdrawing?) {
        self.value = value
        self.quantity = quantity
        self.next = next
    }

    func withdraw(amount: Int) -> Bool {

        var amount = amount

        func canTakeSomeBill(want: Int) -> Bool {
            return (want / self.value) > 0
        }

        var quantity = self.quantity

        while canTakeSomeBill(want: amount) {

            if quantity == 0 {
                break
            }

            amount -= self.value
            quantity -= 1
        }

        guard amount > 0 else {
            return true
        }

        if let next = self.next {
            return next.withdraw(amount: amount)
        }

        return false
    }
}

final class ATM: Withdrawing {

    private var hundred: Withdrawing
    private var fifty: Withdrawing
    private var twenty: Withdrawing
    private var ten: Withdrawing

    private var startPile: Withdrawing {
        return self.hundred
    }

    init(hundred: Withdrawing,
           fifty: Withdrawing,
          twenty: Withdrawing,
             ten: Withdrawing) {

        self.hundred = hundred
        self.fifty = fifty
        self.twenty = twenty
        self.ten = ten
    }

    func withdraw(amount: Int) -> Bool {
        return startPile.withdraw(amount: amount)
    }
}

Usage

// Create piles of money and link them together 10 < 20 < 50 < 100.**
let ten = MoneyPile(value: 10, quantity: 6, next: nil)
let twenty = MoneyPile(value: 20, quantity: 2, next: ten)
let fifty = MoneyPile(value: 50, quantity: 2, next: twenty)
let hundred = MoneyPile(value: 100, quantity: 1, next: fifty)

// Build ATM.
var atm = ATM(hundred: hundred, fifty: fifty, twenty: twenty, ten: ten)
atm.withdraw(amount: 310) // Cannot because ATM has only 300
atm.withdraw(amount: 100) // Can withdraw - 1x100

πŸ‘« Command

The command pattern is used to express a request, including the call to be made and all of its required parameters, in a command object. The command may then be executed immediately or held for later use.

Example:

protocol DoorCommand {
    func execute() -> String
}

final class OpenCommand: DoorCommand {
    let doors:String

    required init(doors: String) {
        self.doors = doors
    }
    
    func execute() -> String {
        return "Opened \(doors)"
    }
}

final class CloseCommand: DoorCommand {
    let doors:String

    required init(doors: String) {
        self.doors = doors
    }
    
    func execute() -> String {
        return "Closed \(doors)"
    }
}

final class HAL9000DoorsOperations {
    let openCommand: DoorCommand
    let closeCommand: DoorCommand
    
    init(doors: String) {
        self.openCommand = OpenCommand(doors:doors)
        self.closeCommand = CloseCommand(doors:doors)
    }
    
    func close() -> String {
        return closeCommand.execute()
    }
    
    func open() -> String {
        return openCommand.execute()
    }
}

Usage:

let podBayDoors = "Pod Bay Doors"
let doorModule = HAL9000DoorsOperations(doors:podBayDoors)

doorModule.open()
doorModule.close()

🎢 Interpreter

The interpreter pattern is used to evaluate sentences in a language.

Example

protocol IntegerExpression {
    func evaluate(_ context: IntegerContext) -> Int
    func replace(character: Character, integerExpression: IntegerExpression) -> IntegerExpression
    func copied() -> IntegerExpression
}

final class IntegerContext {
    private var data: [Character:Int] = [:]

    func lookup(name: Character) -> Int {
        return self.data[name]!
    }

    func assign(expression: IntegerVariableExpression, value: Int) {
        self.data[expression.name] = value
    }
}

final class IntegerVariableExpression: IntegerExpression {
    let name: Character

    init(name: Character) {
        self.name = name
    }

    func evaluate(_ context: IntegerContext) -> Int {
        return context.lookup(name: self.name)
    }

    func replace(character name: Character, integerExpression: IntegerExpression) -> IntegerExpression {
        if name == self.name {
            return integerExpression.copied()
        } else {
            return IntegerVariableExpression(name: self.name)
        }
    }

    func copied() -> IntegerExpression {
        return IntegerVariableExpression(name: self.name)
    }
}

final class AddExpression: IntegerExpression {
    private var operand1: IntegerExpression
    private var operand2: IntegerExpression

    init(op1: IntegerExpression, op2: IntegerExpression) {
        self.operand1 = op1
        self.operand2 = op2
    }

    func evaluate(_ context: IntegerContext) -> Int {
        return self.operand1.evaluate(context) + self.operand2.evaluate(context)
    }

    func replace(character: Character, integerExpression: IntegerExpression) -> IntegerExpression {
        return AddExpression(op1: operand1.replace(character: character, integerExpression: integerExpression),
                             op2: operand2.replace(character: character, integerExpression: integerExpression))
    }

    func copied() -> IntegerExpression {
        return AddExpression(op1: self.operand1, op2: self.operand2)
    }
}

Usage

var context = IntegerContext()

var a = IntegerVariableExpression(name: "A")
var b = IntegerVariableExpression(name: "B")
var c = IntegerVariableExpression(name: "C")

var expression = AddExpression(op1: a, op2: AddExpression(op1: b, op2: c)) // a + (b + c)

context.assign(expression: a, value: 2)
context.assign(expression: b, value: 1)
context.assign(expression: c, value: 3)

var result = expression.evaluate(context)

🍫 Iterator

The iterator pattern is used to provide a standard interface for traversing a collection of items in an aggregate object without the need to understand its underlying structure.

Example:

struct Novella {
    let name: String
}

struct Novellas {
    let novellas: [Novella]
}

struct NovellasIterator: IteratorProtocol {

    private var current = 0
    private let novellas: [Novella]

    init(novellas: [Novella]) {
        self.novellas = novellas
    }

    mutating func next() -> Novella? {
        defer { current += 1 }
        return novellas.count > current ? novellas[current] : nil
    }
}

extension Novellas: Sequence {
    func makeIterator() -> NovellasIterator {
        return NovellasIterator(novellas: novellas)
    }
}

Usage

let greatNovellas = Novellas(novellas: [Novella(name: "The Mist")] )

for novella in greatNovellas {
    print("I've read: \(novella)")
}

πŸ’ Mediator

The mediator pattern is used to reduce coupling between classes that communicate with each other. Instead of classes communicating directly, and thus requiring knowledge of their implementation, the classes send messages via a mediator object.

Example

protocol Receiver {
    associatedtype MessageType
    func receive(message: MessageType)
}

protocol Sender {
    associatedtype MessageType
    associatedtype ReceiverType: Receiver
    
    var recipients: [ReceiverType] { get }
    
    func send(message: MessageType)
}

struct Programmer: Receiver {
    let name: String
    
    init(name: String) {
        self.name = name
    }
    
    func receive(message: String) {
        print("\(name) received: \(message)")
    }
}

final class MessageMediator: Sender {
    internal var recipients: [Programmer] = []
    
    func add(recipient: Programmer) {
        recipients.append(recipient)
    }
    
    func send(message: String) {
        for recipient in recipients {
            recipient.receive(message: message)
        }
    }
}

Usage

func spamMonster(message: String, worker: MessageMediator) {
    worker.send(message: message)
}

let messagesMediator = MessageMediator()

let user0 = Programmer(name: "Linus Torvalds")
let user1 = Programmer(name: "Avadis 'Avie' Tevanian")
messagesMediator.add(recipient: user0)
messagesMediator.add(recipient: user1)

spamMonster(message: "I'd Like to Add you to My Professional Network", worker: messagesMediator)

πŸ’Ύ Memento

The memento pattern is used to capture the current state of an object and store it in such a manner that it can be restored at a later time without breaking the rules of encapsulation.

Example

typealias Memento = [String: String]

Originator

protocol MementoConvertible {
    var memento: Memento { get }
    init?(memento: Memento)
}

struct GameState: MementoConvertible {

    private enum Keys {
        static let chapter = "com.valve.halflife.chapter"
        static let weapon = "com.valve.halflife.weapon"
    }

    var chapter: String
    var weapon: String

    init(chapter: String, weapon: String) {
        self.chapter = chapter
        self.weapon = weapon
    }

    init?(memento: Memento) {
        guard let mementoChapter = memento[Keys.chapter],
              let mementoWeapon = memento[Keys.weapon] else {
            return nil
        }

        chapter = mementoChapter
        weapon = mementoWeapon
    }

    var memento: Memento {
        return [ Keys.chapter: chapter, Keys.weapon: weapon ]
    }
}

Caretaker

enum CheckPoint {

    private static let defaults = UserDefaults.standard

    static func save(_ state: MementoConvertible, saveName: String) {
        defaults.set(state.memento, forKey: saveName)
        defaults.synchronize()
    }

    static func restore(saveName: String) -> Any? {
        return defaults.object(forKey: saveName)
    }
}

Usage

var gameState = GameState(chapter: "Black Mesa Inbound", weapon: "Crowbar")

gameState.chapter = "Anomalous Materials"
gameState.weapon = "Glock 17"
CheckPoint.save(gameState, saveName: "gameState1")

gameState.chapter = "Unforeseen Consequences"
gameState.weapon = "MP5"
CheckPoint.save(gameState, saveName: "gameState2")

gameState.chapter = "Office Complex"
gameState.weapon = "Crossbow"
CheckPoint.save(gameState, saveName: "gameState3")

if let memento = CheckPoint.restore(saveName: "gameState1") as? Memento {
    let finalState = GameState(memento: memento)
    dump(finalState)
}

πŸ‘“ Observer

The observer pattern is used to allow an object to publish changes to its state. Other objects subscribe to be immediately notified of any changes.

Example

protocol PropertyObserver : class {
    func willChange(propertyName: String, newPropertyValue: Any?)
    func didChange(propertyName: String, oldPropertyValue: Any?)
}

final class TestChambers {

    weak var observer:PropertyObserver?

    private let testChamberNumberName = "testChamberNumber"

    var testChamberNumber: Int = 0 {
        willSet(newValue) {
            observer?.willChange(propertyName: testChamberNumberName, newPropertyValue: newValue)
        }
        didSet {
            observer?.didChange(propertyName: testChamberNumberName, oldPropertyValue: oldValue)
        }
    }
}

final class Observer : PropertyObserver {
    func willChange(propertyName: String, newPropertyValue: Any?) {
        if newPropertyValue as? Int == 1 {
            print("Okay. Look. We both said a lot of things that you're going to regret.")
        }
    }

    func didChange(propertyName: String, oldPropertyValue: Any?) {
        if oldPropertyValue as? Int == 0 {
            print("Sorry about the mess. I've really let the place go since you killed me.")
        }
    }
}

Usage

var observerInstance = Observer()
var testChambers = TestChambers()
testChambers.observer = observerInstance
testChambers.testChamberNumber += 1

πŸ‰ State

The state pattern is used to alter the behaviour of an object as its internal state changes. The pattern allows the class for an object to apparently change at run-time.

Example

final class Context {
	private var state: State = UnauthorizedState()

    var isAuthorized: Bool {
        get { return state.isAuthorized(context: self) }
    }

    var userId: String? {
        get { return state.userId(context: self) }
    }

	func changeStateToAuthorized(userId: String) {
		state = AuthorizedState(userId: userId)
	}

	func changeStateToUnauthorized() {
		state = UnauthorizedState()
	}
}

protocol State {
	func isAuthorized(context: Context) -> Bool
	func userId(context: Context) -> String?
}

class UnauthorizedState: State {
	func isAuthorized(context: Context) -> Bool { return false }

	func userId(context: Context) -> String? { return nil }
}

class AuthorizedState: State {
	let userId: String

	init(userId: String) { self.userId = userId }

	func isAuthorized(context: Context) -> Bool { return true }

	func userId(context: Context) -> String? { return userId }
}

Usage

let userContext = Context()
(userContext.isAuthorized, userContext.userId)
userContext.changeStateToAuthorized(userId: "admin")
(userContext.isAuthorized, userContext.userId) // now logged in as "admin"
userContext.changeStateToUnauthorized()
(userContext.isAuthorized, userContext.userId)

πŸ’‘ Strategy

The strategy pattern is used to create an interchangeable family of algorithms from which the required process is chosen at run-time.

Example

struct TestSubject {
    let pupilDiameter: Double
    let blushResponse: Double
    let isOrganic: Bool
}

protocol RealnessTesting: AnyObject {
    func testRealness(_ testSubject: TestSubject) -> Bool
}

final class VoightKampffTest: RealnessTesting {
    func testRealness(_ testSubject: TestSubject) -> Bool {
        return testSubject.pupilDiameter < 30.0 || testSubject.blushResponse == 0.0
    }
}

final class GeneticTest: RealnessTesting {
    func testRealness(_ testSubject: TestSubject) -> Bool {
        return testSubject.isOrganic
    }
}

final class BladeRunner {
    private let strategy: RealnessTesting

    init(test: RealnessTesting) {
        self.strategy = test
    }

    func testIfAndroid(_ testSubject: TestSubject) -> Bool {
        return !strategy.testRealness(testSubject)
    }
}

Usage

let rachel = TestSubject(pupilDiameter: 30.2,
                         blushResponse: 0.3,
                         isOrganic: false)

// Deckard is using a traditional test
let deckard = BladeRunner(test: VoightKampffTest())
let isRachelAndroid = deckard.testIfAndroid(rachel)

// Gaff is using a very precise method
let gaff = BladeRunner(test: GeneticTest())
let isDeckardAndroid = gaff.testIfAndroid(rachel)

πŸ“ Template Method

The template method pattern defines the steps of an algorithm and allows the redefinition of one or more of these steps. In this way, the template method protects the algorithm, the order of execution and provides abstract methods that can be implemented by concrete types.

Example

protocol Garden {
    func prepareSoil()
    func plantSeeds()
    func waterPlants()
    func prepareGarden()
}

extension Garden {

    func prepareGarden() {
        prepareSoil()
        plantSeeds()
        waterPlants()
    }
}

final class RoseGarden: Garden {

    func prepare() {
        prepareGarden()
    }

    func prepareSoil() {
        print ("prepare soil for rose garden")
    }

    func plantSeeds() {
        print ("plant seeds for rose garden")
    }

    func waterPlants() {
       print ("water the rose garden")
    }
}

Usage

let roseGarden = RoseGarden()
roseGarden.prepare()

πŸƒ Visitor

The visitor pattern is used to separate a relatively complex set of structured data classes from the functionality that may be performed upon the data that they hold.

Example

protocol PlanetVisitor {
	func visit(planet: PlanetAlderaan)
	func visit(planet: PlanetCoruscant)
	func visit(planet: PlanetTatooine)
    func visit(planet: MoonJedha)
}

protocol Planet {
	func accept(visitor: PlanetVisitor)
}

final class MoonJedha: Planet {
    func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) }
}

final class PlanetAlderaan: Planet {
    func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) }
}

final class PlanetCoruscant: Planet {
	func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) }
}

final class PlanetTatooine: Planet {
	func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) }
}

final class NameVisitor: PlanetVisitor {
	var name = ""

	func visit(planet: PlanetAlderaan)  { name = "Alderaan" }
	func visit(planet: PlanetCoruscant) { name = "Coruscant" }
	func visit(planet: PlanetTatooine)  { name = "Tatooine" }
    func visit(planet: MoonJedha)     	{ name = "Jedha" }
}

Usage

let planets: [Planet] = [PlanetAlderaan(), PlanetCoruscant(), PlanetTatooine(), MoonJedha()]

let names = planets.map { (planet: Planet) -> String in
	let visitor = NameVisitor()
    planet.accept(visitor: visitor)

    return visitor.name
}

names

Creational

In software engineering, creational design patterns are design patterns that deal with object creation mechanisms, trying to create objects in a manner suitable to the situation. The basic form of object creation could result in design problems or added complexity to the design. Creational design patterns solve this problem by somehow controlling this object creation.

Source: wikipedia.org

🌰 Abstract Factory

The abstract factory pattern is used to provide a client with a set of related or dependant objects. The "family" of objects created by the factory are determined at run-time.

Example

Protocols

protocol BurgerDescribing {
    var ingredients: [String] { get }
}

struct CheeseBurger: BurgerDescribing {
    let ingredients: [String]
}

protocol BurgerMaking {
    func make() -> BurgerDescribing
}

// Number implementations with factory methods

final class BigKahunaBurger: BurgerMaking {
    func make() -> BurgerDescribing {
        return CheeseBurger(ingredients: ["Cheese", "Burger", "Lettuce", "Tomato"])
    }
}

final class JackInTheBox: BurgerMaking {
    func make() -> BurgerDescribing {
        return CheeseBurger(ingredients: ["Cheese", "Burger", "Tomato", "Onions"])
    }
}

Abstract factory

enum BurgerFactoryType: BurgerMaking {

    case bigKahuna
    case jackInTheBox

    func make() -> BurgerDescribing {
        switch self {
        case .bigKahuna:
            return BigKahunaBurger().make()
        case .jackInTheBox:
            return JackInTheBox().make()
        }
    }
}

Usage

let bigKahuna = BurgerFactoryType.bigKahuna.make()
let jackInTheBox = BurgerFactoryType.jackInTheBox.make()

πŸ‘· Builder

The builder pattern is used to create complex objects with constituent parts that must be created in the same order or using a specific algorithm. An external class controls the construction algorithm.

Example

final class DeathStarBuilder {

    var x: Double?
    var y: Double?
    var z: Double?

    typealias BuilderClosure = (DeathStarBuilder) -> ()

    init(buildClosure: BuilderClosure) {
        buildClosure(self)
    }
}

struct DeathStar : CustomStringConvertible {

    let x: Double
    let y: Double
    let z: Double

    init?(builder: DeathStarBuilder) {

        if let x = builder.x, let y = builder.y, let z = builder.z {
            self.x = x
            self.y = y
            self.z = z
        } else {
            return nil
        }
    }

    var description:String {
        return "Death Star at (x:\(x) y:\(y) z:\(z))"
    }
}

Usage

let empire = DeathStarBuilder { builder in
    builder.x = 0.1
    builder.y = 0.2
    builder.z = 0.3
}

let deathStar = DeathStar(builder:empire)

🏭 Factory Method

The factory pattern is used to replace class constructors, abstracting the process of object generation so that the type of the object instantiated can be determined at run-time.

Example

protocol CurrencyDescribing {
    var symbol: String { get }
    var code: String { get }
}

final class Euro: CurrencyDescribing {
    var symbol: String {
        return "€"
    }
    
    var code: String {
        return "EUR"
    }
}

final class UnitedStatesDolar: CurrencyDescribing {
    var symbol: String {
        return "$"
    }
    
    var code: String {
        return "USD"
    }
}

enum Country {
    case unitedStates
    case spain
    case uk
    case greece
}

enum CurrencyFactory {
    static func currency(for country: Country) -> CurrencyDescribing? {

        switch country {
            case .spain, .greece:
                return Euro()
            case .unitedStates:
                return UnitedStatesDolar()
            default:
                return nil
        }
        
    }
}

Usage

let noCurrencyCode = "No Currency Code Available"

CurrencyFactory.currency(for: .greece)?.code ?? noCurrencyCode
CurrencyFactory.currency(for: .spain)?.code ?? noCurrencyCode
CurrencyFactory.currency(for: .unitedStates)?.code ?? noCurrencyCode
CurrencyFactory.currency(for: .uk)?.code ?? noCurrencyCode

πŸ”‚ Monostate

The monostate pattern is another way to achieve singularity. It works through a completely different mechanism, it enforces the behavior of singularity without imposing structural constraints. So in that case, monostate saves the state as static instead of the entire instance as a singleton. SINGLETON and MONOSTATE - Robert C. Martin

Example:

class Settings {

    enum Theme {
        case `default`
        case old
        case new
    }

    private static var theme: Theme?

    var currentTheme: Theme {
        get { Settings.theme ?? .default }
        set(newTheme) { Settings.theme = newTheme }
    }
}

Usage:

import SwiftUI

// When change the theme
let settings = Settings() // Starts using theme .old
settings.currentTheme = .new // Change theme to .new

// On screen 1
let screenColor: Color = Settings().currentTheme == .old ? .gray : .white

// On screen 2
let screenTitle: String = Settings().currentTheme == .old ? "Itunes Connect" : "App Store Connect"

πŸƒ Prototype

The prototype pattern is used to instantiate a new object by copying all of the properties of an existing object, creating an independent clone. This practise is particularly useful when the construction of a new object is inefficient.

Example

struct MoonWorker {

    let name: String
    var health: Int = 100

    init(name: String) {
        self.name = name
    }

    func clone() -> MoonWorker {
        return MoonWorker(name: name)
    }
}

Usage

let prototype = MoonWorker(name: "Sam Bell")

var bell1 = prototype.clone()
bell1.health = 12

var bell2 = prototype.clone()
bell2.health = 23

var bell3 = prototype.clone()
bell3.health = 0

πŸ’ Singleton

The singleton pattern ensures that only one object of a particular class is ever created. All further references to objects of the singleton class refer to the same underlying instance. There are very few applications, do not overuse this pattern!

Example:

final class ElonMusk {

    static let shared = ElonMusk()

    private init() {
        // Private initialization to ensure just one instance is created.
    }
}

Usage:

let elon = ElonMusk.shared // There is only one Elon Musk folks.

Structural

In software engineering, structural design patterns are design patterns that ease the design by identifying a simple way to realize relationships between entities.

Source: wikipedia.org

πŸ”Œ Adapter

The adapter pattern is used to provide a link between two otherwise incompatible types by wrapping the "adaptee" with a class that supports the interface required by the client.

Example

protocol NewDeathStarSuperLaserAiming {
    var angleV: Double { get }
    var angleH: Double { get }
}

Adaptee

struct OldDeathStarSuperlaserTarget {
    let angleHorizontal: Float
    let angleVertical: Float

    init(angleHorizontal: Float, angleVertical: Float) {
        self.angleHorizontal = angleHorizontal
        self.angleVertical = angleVertical
    }
}

Adapter

struct NewDeathStarSuperlaserTarget: NewDeathStarSuperLaserAiming {

    private let target: OldDeathStarSuperlaserTarget

    var angleV: Double {
        return Double(target.angleVertical)
    }

    var angleH: Double {
        return Double(target.angleHorizontal)
    }

    init(_ target: OldDeathStarSuperlaserTarget) {
        self.target = target
    }
}

Usage

let target = OldDeathStarSuperlaserTarget(angleHorizontal: 14.0, angleVertical: 12.0)
let newFormat = NewDeathStarSuperlaserTarget(target)

newFormat.angleH
newFormat.angleV

πŸŒ‰ Bridge

The bridge pattern is used to separate the abstract elements of a class from the implementation details, providing the means to replace the implementation details without modifying the abstraction.

Example

protocol Switch {
    var appliance: Appliance { get set }
    func turnOn()
}

protocol Appliance {
    func run()
}

final class RemoteControl: Switch {
    var appliance: Appliance

    func turnOn() {
        self.appliance.run()
    }
    
    init(appliance: Appliance) {
        self.appliance = appliance
    }
}

final class TV: Appliance {
    func run() {
        print("tv turned on");
    }
}

final class VacuumCleaner: Appliance {
    func run() {
        print("vacuum cleaner turned on")
    }
}

Usage

let tvRemoteControl = RemoteControl(appliance: TV())
tvRemoteControl.turnOn()

let fancyVacuumCleanerRemoteControl = RemoteControl(appliance: VacuumCleaner())
fancyVacuumCleanerRemoteControl.turnOn()

🌿 Composite

The composite pattern is used to create hierarchical, recursive tree structures of related objects where any element of the structure may be accessed and utilised in a standard manner.

Example

Component

protocol Shape {
    func draw(fillColor: String)
}

Leafs

final class Square: Shape {
    func draw(fillColor: String) {
        print("Drawing a Square with color \(fillColor)")
    }
}

final class Circle: Shape {
    func draw(fillColor: String) {
        print("Drawing a circle with color \(fillColor)")
    }
}

Composite

final class Whiteboard: Shape {

    private lazy var shapes = [Shape]()

    init(_ shapes: Shape...) {
        self.shapes = shapes
    }

    func draw(fillColor: String) {
        for shape in self.shapes {
            shape.draw(fillColor: fillColor)
        }
    }
}

Usage:

var whiteboard = Whiteboard(Circle(), Square())
whiteboard.draw(fillColor: "Red")

🍧 Decorator

The decorator pattern is used to extend or alter the functionality of objects at run- time by wrapping them in an object of a decorator class. This provides a flexible alternative to using inheritance to modify behaviour.

Example

protocol CostHaving {
    var cost: Double { get }
}

protocol IngredientsHaving {
    var ingredients: [String] { get }
}

typealias BeverageDataHaving = CostHaving & IngredientsHaving

struct SimpleCoffee: BeverageDataHaving {
    let cost: Double = 1.0
    let ingredients = ["Water", "Coffee"]
}

protocol BeverageHaving: BeverageDataHaving {
    var beverage: BeverageDataHaving { get }
}

struct Milk: BeverageHaving {

    let beverage: BeverageDataHaving

    var cost: Double {
        return beverage.cost + 0.5
    }

    var ingredients: [String] {
        return beverage.ingredients + ["Milk"]
    }
}

struct WhipCoffee: BeverageHaving {

    let beverage: BeverageDataHaving

    var cost: Double {
        return beverage.cost + 0.5
    }

    var ingredients: [String] {
        return beverage.ingredients + ["Whip"]
    }
}

Usage:

var someCoffee: BeverageDataHaving = SimpleCoffee()
print("Cost: \(someCoffee.cost); Ingredients: \(someCoffee.ingredients)")
someCoffee = Milk(beverage: someCoffee)
print("Cost: \(someCoffee.cost); Ingredients: \(someCoffee.ingredients)")
someCoffee = WhipCoffee(beverage: someCoffee)
print("Cost: \(someCoffee.cost); Ingredients: \(someCoffee.ingredients)")

🎁 Façade

The facade pattern is used to define a simplified interface to a more complex subsystem.

Example

final class Defaults {

    private let defaults: UserDefaults

    init(defaults: UserDefaults = .standard) {
        self.defaults = defaults
    }

    subscript(key: String) -> String? {
        get {
            return defaults.string(forKey: key)
        }

        set {
            defaults.set(newValue, forKey: key)
        }
    }
}

Usage

let storage = Defaults()

// Store
storage["Bishop"] = "Disconnect me. I’d rather be nothing"

// Read
storage["Bishop"]

πŸƒ Flyweight

The flyweight pattern is used to minimize memory usage or computational expenses by sharing as much as possible with other similar objects.

Example

// Instances of SpecialityCoffee will be the Flyweights
struct SpecialityCoffee {
    let origin: String
}

protocol CoffeeSearching {
    func search(origin: String) -> SpecialityCoffee?
}

// Menu acts as a factory and cache for SpecialityCoffee flyweight objects
final class Menu: CoffeeSearching {

    private var coffeeAvailable: [String: SpecialityCoffee] = [:]

    func search(origin: String) -> SpecialityCoffee? {
        if coffeeAvailable.index(forKey: origin) == nil {
            coffeeAvailable[origin] = SpecialityCoffee(origin: origin)
        }

        return coffeeAvailable[origin]
    }
}

final class CoffeeShop {
    private var orders: [Int: SpecialityCoffee] = [:]
    private let menu: CoffeeSearching

    init(menu: CoffeeSearching) {
        self.menu = menu
    }

    func takeOrder(origin: String, table: Int) {
        orders[table] = menu.search(origin: origin)
    }

    func serve() {
        for (table, origin) in orders {
            print("Serving \(origin) to table \(table)")
        }
    }
}

Usage

let coffeeShop = CoffeeShop(menu: Menu())

coffeeShop.takeOrder(origin: "Yirgacheffe, Ethiopia", table: 1)
coffeeShop.takeOrder(origin: "Buziraguhindwa, Burundi", table: 3)

coffeeShop.serve()

β˜” Protection Proxy

The proxy pattern is used to provide a surrogate or placeholder object, which references an underlying object. Protection proxy is restricting access.

Example

protocol DoorOpening {
    func open(doors: String) -> String
}

final class HAL9000: DoorOpening {
    func open(doors: String) -> String {
        return ("HAL9000: Affirmative, Dave. I read you. Opened \(doors).")
    }
}

final class CurrentComputer: DoorOpening {
    private var computer: HAL9000!

    func authenticate(password: String) -> Bool {

        guard password == "pass" else {
            return false
        }

        computer = HAL9000()

        return true
    }

    func open(doors: String) -> String {

        guard computer != nil else {
            return "Access Denied. I'm afraid I can't do that."
        }

        return computer.open(doors: doors)
    }
}

Usage

let computer = CurrentComputer()
let podBay = "Pod Bay Doors"

computer.open(doors: podBay)

computer.authenticate(password: "pass")
computer.open(doors: podBay)

🍬 Virtual Proxy

The proxy pattern is used to provide a surrogate or placeholder object, which references an underlying object. Virtual proxy is used for loading object on demand.

Example

protocol HEVSuitMedicalAid {
    func administerMorphine() -> String
}

final class HEVSuit: HEVSuitMedicalAid {
    func administerMorphine() -> String {
        return "Morphine administered."
    }
}

final class HEVSuitHumanInterface: HEVSuitMedicalAid {

    lazy private var physicalSuit: HEVSuit = HEVSuit()

    func administerMorphine() -> String {
        return physicalSuit.administerMorphine()
    }
}

Usage

let humanInterface = HEVSuitHumanInterface()
humanInterface.administerMorphine()

Info

πŸ“– Descriptions from: Gang of Four Design Patterns Reference Sheet

Comments
  • Readme is getting longer and longer

    Readme is getting longer and longer

    Hi,

    At first I want to thanks for this repo, it's great for people who want to read about design patterns in swift and it is good for me, for learning others by contributing and sharing our knowledge and for learning myself when I'm wiring examples of some patterns :)

    What this issue is about is maintenance Readme.markdown file. I was thinking a little bit and I'm afraid this file is bulky, hard to browse and maintenance. Wouldn't it be better to move all the patterns implementations to separated .swift files and create links in description to these files (with some description optionally)?

    The file could looks like this:

    /// Pattern name /// Xcode version

    /** Short description description here */

    /// Implementation implementation here

    /// Usage One or more use cases

    What do you think about the idea?

    enhancement 
    opened by tomkowz 14
  • Template Method

    Template Method

    Add Template method in design pattern

    • [x] Do not change the .playground nor README.md manually.
    • [x] Go to /source and edit .swift files.
    • [x] Run: generate-playground.sh
    opened by remlostime 5
  • Fix Jedha spelling

    Fix Jedha spelling

    Source: http://www.starwars.com/databank/jedha

    • [x] Do not change the .playground nor README.md manually.
    • [x] Go to /source and edit .swift files.
    • [x] Run: generate-playground.sh
    opened by otaviolima 5
  • Add further example. update source to match README

    Add further example. update source to match README

    I added the new further examples. I also updated the source so the generated items match the recent pull requests that were only added to the readme file.

    opened by kingreza 5
  • Update README.md

    Update README.md

    added 'further examples' sub-heading. This way the cheatsheet can link to more in depth examples of each design pattern.

    When you have more time you could add your examples!

    opened by kingreza 5
  • Removed .synchronize()

    Removed .synchronize()

    It's unnecessary to call defaults.synchronize() according to Apple's documentation. https://developer.apple.com/documentation/foundation/userdefaults/1414005-synchronize

    opened by weitieda 4
  • Format

    Format

    Make the indent correct for state pattern

    • [x] Do not change the .playground nor README.md manually.
    • [x] Go to /source and edit .swift files.
    • [x] Run: generate-playground.sh
    opened by remlostime 4
  • Add Template method without subclassing

    Add Template method without subclassing

    • [x] Added description
    • [x] Linked to or created issue
    • [x] Generated files as described GENERATE.md

    In https://github.com/ochococo/Design-Patterns-In-Swift/pull/74#issuecomment-480422159, it was expressed a concern about the usefulness of this pattern, as it's definition suggests the use of subclassing. It can, however, be applied with protocols and protocol extensions, such as the example I added. This way inheritance can be avoided, and the potential benefits of the pattern are kept.

    opened by viniciusml 3
  • Added references for further reading

    Added references for further reading

    Hi! The pull request contains references for further reading. Everything conforms to the Pull Request Template

    • [x] Do not change the .playground nor README.md manually.
    • [x] Go to /source and edit .swift files.
    • [x] Run: generate-playground.sh
    opened by jVirus 3
  • Template Pattern

    Template Pattern

    • issue #81
    • delegate in Template Pattern can make circular reference.
    • [x] Do not change the .playground nor README.md manually.
    • [x] Go to /source and edit .swift files.
    • [x] Run: generate-playground.sh
    opened by cozzin 3
  • Suggestion for AbstractFactory using typealias to define factory type

    Suggestion for AbstractFactory using typealias to define factory type

    Hi Oktawian. Your Design-Patterns-In-Swift is awesome! Congrats. Here is a suggestion for the AbstractFactory. What I like here is by defining the factory method in the protocol, it forces you to implement it. Let me know what you think.

    opened by erykwarren 3
  • [Issue-116] Fixes the camel case naming in Adapter

    [Issue-116] Fixes the camel case naming in Adapter

    • [x] Read [CONTRIBUTING.md]
    • [X] Added description
    • [X] Linked to and/or created issue

    Issue -> https://github.com/ochococo/Design-Patterns-In-Swift/issues/116

    Description

    Fixes the camel case naming in Adapter.

    opened by Siauruk 0
  • Update README

    Update README

    • [ ] Read [CONTRIBUTING.md]](https://github.com/ochococo/Design-Patterns-In-Swift/blob/master/CONTRIBUTING.md])
    • [ ] Added description
    • [ ] Linked to and/or created issue
    opened by helnabawy 0
  • Fix facade direct link in table of contents

    Fix facade direct link in table of contents

    • [x] Read [CONTRIBUTING.md]](https://github.com/ochococo/Design-Patterns-In-Swift/blob/master/CONTRIBUTING.md])
    • [x] Added description
    • [x] Linked to and/or created issue
    opened by mohamedmostafafawzi 0
  • Lose call flow in mediator example

    Lose call flow in mediator example

    In Mediator case, just have the MessageMediator broadcast the message to all Programmers. But In GOF, mediator structure like below:

    521bcedd-4c0b-4d63-8d51-ecb1f38b16e1

    Apparently, programmers need to communicate with each other, so they also need to hold the MessageMediator. Looking forward to your reply, thanks.

    opened by cash0211 1
Owner
Oktawian Chojnacki
I drink β˜•οΈ, read πŸ“š, ✈️ and ✨ mobile software. Proud citizen of the πŸ‡ͺπŸ‡Ί.
Oktawian Chojnacki
Spin aims to provide a versatile Feedback Loop implementation working with the three main reactive frameworks available in the Swift community (RxSwift, ReactiveSwift and Combine)

With the introduction of Combine and SwiftUI, we will face some transition periods in our code base. Our applications will use both Combine and a thir

Spinners 119 Dec 29, 2022
Viper Framework for iOS using Swift

Write an iOS app following VIPER architecture. But in an easy way. Viper the easy way We all know Viper is cool. But we also know that it's hard to se

Ferran AbellΓ³ 504 Dec 31, 2022
Swift Interaction with VIPER Architecture

SwiftyVIPER SwiftyVIPER allows easy use of VIPER architecture throughout your iOS application. VIPER Architecture What is VIPER? Great question! VIPER

Cody Winton 121 Jan 2, 2023
A Swift 4.2 VIPER Module Boilerplate Generator with predefined functions and a BaseViewProtocol.

Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away. Are you new to VIPER Design Pattern? Want

Mohamad Kaakati 68 Sep 29, 2022
This is an example of clean architecture and MVVM pattern written in swift

Swift Clean Architecture MVVM This is an example of clean architecture and MVVM pattern written in swift First of all thanks to all of those who made

null 19 Oct 12, 2022
πŸ“– Design Patterns implemented in Swift 5.0

?? Design Patterns implemented in Swift 5.0

Oktawian Chojnacki 13.9k Dec 28, 2022
Rabble Wabble - This is small Project implemented with respected design patterns

Rabble_Wabble This is small Project implemented with respected design patterns D

Ahmed Amin 2 Feb 2, 2022
Material para a apresentação da palestra "Implementando Interesses Transversais - um papo sobre arquitetura, DI e Design Patterns em Swift/iOS" no TDC Future 2021

--- title: Implementando Interesses Transversais - um papo sobre arquitetura, DI e Design Patterns em Swift/iOS author: CΓ­cero Camargo date: Nov 30th

CΓ­cero Camargo 2 Nov 30, 2021
This is a repo for my implementation of Gang of Four Book: Software Design Patterns. All written in Swift.

GoF-Swift-Design-Patterns This repo is intended to implement the known Software Design Patterns from the Gang of Four book using Swift Programming Lan

Noor El-Din Walid 3 Jul 11, 2022
Sample applications of iOS Design patterns written using swift.

ios-design-patterns This repo contains all my Sample applications of iOS Design patterns written using swift. Link for my Design patterns Blog : https

ShreeThaanu Raveendran 3 Nov 2, 2022
This is Github user search demo app which made by many variety of design patterns.

iOSDesignPatternSamples This is Github user search demo app which made by many variety of design patterns. Application Structure SearchViewController.

Taiki Suzuki 679 Dec 11, 2022
iOS 15, MVVM, Async Await, Core Data, Abstract Network Layer, Repository & DAO design patterns, SwiftUI and Combine

iOS 15, MVVM, Async Await, Core Data, Abstract Network Layer, Repository & DAO design patterns, SwiftUI and Combine

Conrado Mateu Gisbert 18 Dec 23, 2022
MMVMi: A Validation Model for MVC and MVVM Design Patterns in iOS Applications

MMVMi MMVMi: A Validation Model for MVC and MVVM Design Patterns in iOS Applications Motivation Design patterns have gained popularity as they provide

Mariam AlJamea 11 Aug 19, 2022
Orbit-swiftui - Orbit design system implemented in SwiftUI for iOS

Orbit is a SwiftUI component library which provides developers the easiest possi

Kiwi.com 37 Jan 3, 2023
This "Calculator" application is a simple one screen design of calculator screen i have made this single screen design application just to practice AutoLayout concepts.

Calculator Layout This "Calculator" application is a simple one screen design of calculator screen i have made this single screen design application j

Chetan Parate 1 Oct 29, 2021
Swift, UIkit, Anchorage, Clean Architecture, UICollectionViewDiffableDataSourcem, MVVM+Coordinators patterns

About the app iOS project realized with Swift, UIkit, Anchorage, Clean Architecture, UICollectionViewDiffableDataSource and MVVM + Coordinators patter

Luca Berardinelli 4 Dec 29, 2022
Models UI navigation patterns using TCA

Composable Navigation The Composable Navigation is a Swift Package that builds on top of The Composable Architecture (TCA, for short). It models UI na

Michael Heinzl 41 Dec 14, 2022
An app to count stitches in crochet patterns. Multiplatform.

An app to count your crochet patterns' stitches! Made with 100% SwiftUI, no UIKit, and no 3rd party dependencies. Powered by regular expressions. Down

Zheng 9 Oct 24, 2022
A charmful decade with many colors patterns, disco music, and other cultural expressions that we refer to as vintage

MontyHallProblem Welcome to the 70s! ?? That is a charmful decade with many colors patterns, disco music, and other cultural expressions that we refer

Diogo Infante 2 Dec 28, 2021
A repository for training iOS programming and UI patterns.

iOS Swift Training This repository will be used for training iOS programming using Swift and UI patterns. Some examples may be simple, but they are us

Guilherme Daniel Fernandes da Silva 0 Nov 25, 2021