




























	
Math

	
Audio

	
Socket

	
UICollectionView

	
Image

	
Core Data

	

More


SwiftUI App
Tab Bar
Editor
Security
Cards
Realm
Text
Permissions
Patterns
SQL drivers
WebSocket
Pull to Refresh
Maps
Networking
Localization
Layout
Color
Code Quality
Machine Learning
Video
Dependency Managers
Charts
Button
Styling
Cache
Algorithm
Camera
Communication
Event
PDF
Content App
PickerView
Database
Authentication
Form
App Routing Systems
Alert & Action Sheet
CSV
Concurrency
HUD
Payments
Logging
Menu
Date & Time
Bluetooth
Testing
XML & HTML
Calendar
Command Line
Boilerplates
Popup
App Store
QRCode
TextField & TextView
Augmented Reality
JSON
API Wrapper
Version Manager
Key Value Store
Walkthrough / Intro / Tutorial
Miscellaneous
Webserver
Pagination
Guides
Transition














	Overview
	Comments
32

	Releases






	


Star 582


	


Watch 17


	


Fork 113
















TPPDF is a simple-to-use PDF builder for iOS








techprimate







 Last update: Jan 6, 2023







Related tags


PDF

swift
pdf
ios
builder
generator
cocoapods


Overview





  

  TPPDF is a fast PDF builder for iOS & macOS using simple commands to create advanced documents!  

   


            


   


 Created and maintained by Philip Niedertscheider and all the amazing contributors. 

 Features • Getting Started • Communication • Usage • Installation • Credits • License 


 
Features

	 Page header and footer
	 Dynamic content layout with page alignment
	 Support for tables and cell alignment
	 Attributed strings
	 Custom spacing
	 Image support
	 Horizontal line separators
	 Custom indentation
	 Custom top offset (good for layered rendering)
	 Pagination
	 Image caption
	 Compress images
	 Custom image size fit
	 Images in the header and footer
	 Horizontal line separators in the header and footer
	 Generate PDF files directly to handle large PDF files (Details)
	 PDF metadata
	 Custom table styling
	 Multi-column sections
	 Swift Package Manager Support
	 Tables with cell merging & automatic page breaking
	 Hyperlinks in text
	 Native progress tracking using Foundation.Progress
	 Documentation



 
Getting Started

Building a PDF document is very easy:

First, you create a document with a paperformat...


let document = PDFDocument(format: .a4)



...then you add your information to a container...


document.add(.contentCenter, text: "Create PDF documents easily.")



...then you render the document...


let generator = PDFGenerator(document: document)
let url  = try generator.generateURL(filename: "Example.pdf")



...done!

If you need more details, checkout Usage.


 
Communication

Attention:

TPPDF is an Open Source side-project of techprimate. As we are currently working on multiple other projects, we only have limited time for fixing bugs and enhancing TPPDF.

That's why any issue reporting and especially Pull Requests are very welcome!

If you need professional support for your company, you can reach out to @philprimes on Twitter or on our website techprimate.com! This is mainly for custom or high-priority requests, therefore we won't publish a consulting pricing for now.

For everything else, please see Communication and this message. Thank you!

	If you need help, use Stack Overflow. (Tag 'TPPDF') Just open up another issue, it might lead to better documentation.
	If you found a bug, open an issue.
	If you have a feature request, open an issue.
	If you want to contribute, submit a pull request.



 
Example

Take a look at the Getting Started Guide or checkout the Examples (using of one of the following):

	Clone the repository and look at the Example folders
	Run pod try TPPDF



 
Apps using TPPDF

If you are using TPPDF in your app and want to be listed here, simply create a pull request or let us know on Twitter or via GitHub. We are always curious to see, who is using our project :)

Burnout Coach - by Stéphane Mégy



ChatHistory - by techprimate



Hikingbook - by Zheng-Xiang Ke



Bug Journal - by David Johnson



Energy Tracker - by Stefan Nebel




 
Credits

TPPDF is created and maintained by Philip Niedertscheider, founder of techprimate.

             


 
Contributors

Please consider backing this project by using the following GitHub Sponsor button.

We want to thank all contributors for their effort!


 
License

TPPDF is available under the MIT license. See the LICENSE file for more info.












Comments




	










PDFSection overlap





I'm trying with the example target provided with this project

minimum code to reproduce the problem

let document = PDFDocument(format: .a4)
let section = PDFSection(columnWidths: [0.3, 0.7])
        section.columns[0].addText(.left, text: "Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem")
        section.columns[1].addText(.left, text: "Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.")
        
document.addSection(section)
        
document.addSection(section)





Help would be appreciated

pending 




opened by omiz  28






	










problem with showHeadersOnEveryPage





Hi , i am using TPPDF 2.2.0 and integrating in a personal iOS app i am writing . a great library , thank you but i am trying to understand showHeadersOnEveryPage
when showHeadersOnEveryPage is true, the header row overwrites the top row on the next page and ends up hiding it.
i don't see any properties to add space after the header row. being new, i might have overlooked something

here are two screenshots.. without a header and with. the 20:12 entry is overwritten by the header row



thank you
Sami

bug 




opened by Sgkhour  24






	










Column Wrap





Is it possible to have content wrap to the next column instead of the next page? Or to get the height of each added object (text, table, etc) so I can manually wrap object to the next column in a section?

enhancement testing 




opened by donnnyrewq  22






	










Getting UIGraphicsGetCurrentContext() nil





I am getting UIGraphicsGetCurrentContext() nil when the app is run in device, it works fine in simulator.

Here's the method where UIGraphicsGetCurrentContext() is nil:

    override func draw(generator: PDFGenerator, container: PDFContainer) throws {
        if attributedString == nil {
            throw PDFError.textObjectNotCalculated
        }

        // Get current graphics context
        let currentContext = UIGraphicsGetCurrentContext()!

        // Create a core text frame setter
        let framesetter = CTFramesetterCreateWithAttributedString(attributedString)

        // Save context pre manipulation
        currentContext.saveGState()

        // Reset text matrix, so no text scaling is affected
        currentContext.textMatrix = CGAffineTransform.identity

        // Create the frame and a rectangular path of the text frame
        let frameRect = CGRect(x: 0, y: 0, width: frame.width, height: frame.height)
        let framePath = UIBezierPath(rect: frameRect).cgPath

        // Create core text frame for the given attributed string
        // The whole text should fit the frame, as calculations were already done
        let frameRef = CTFramesetterCreateFrame(framesetter, CFRangeMake(0, attributedString.length), framePath, nil)

        // Translate by 100% graphics height up and reverse scale, as core text does draw from bottom up and not from top down
        currentContext.translateBy(x: 0, y: UIGraphicsGetPDFContextBounds().height)
        currentContext.scaleBy(x: 1.0, y: -1.0)

        // Translate context to actual position of text
        currentContext.translateBy(x: frame.minX, y: UIGraphicsGetPDFContextBounds().height - frame.maxY)

        // Draw text into context
        CTFrameDraw(frameRef, currentContext)

        // Restore context to pre manipulation
        currentContext.restoreGState()

        // If debugging is enabled, draw a outline around the text
        if generator.debug {
            PDFGraphics.drawRect(rect: self.frame, outline: PDFLineStyle(type: .dashed, color: .red, width: 1.0), fill: .clear)
        }
    }


Any help on this would be much appreciated. Thanks.

bug help wanted 




opened by zaeem-khatib  18






	










Blank page at the end of each batched document (external document)





I am currently using the 'develop' branch in order to test adding external PDFs. While the functionality is running great I keep running into an issue were a blank page is added in the end after importing an external document.

Here is what I am using
batchPagesv2.add(externalDocument: PDFExternalDocument(url: url, pages: pages[count]))

Whats interesting is that if I duplicate the batch job multiple times, only one extra blank page is added on the end. If I do not use external documents there is no blank page added either. So I am a bit lost as to where this page is coming from.

So either this can be flagged as a bug or a feature suggestion to maybe make a boolean to filter out blank pages upon generation.

bug pending 




opened by hajjD  17






	










Dynamically Add A Page while creating a PDFDocument





I am using this library to generate a PDF of content added by the user. I am using: let pdfDocument = PDFDocument(format: .a4) and then adding text, table as required.

I wanted to know if there is a way to dynamically create a new page once content had reached the end of page one.
Please advise.

bug 




opened by harishchopra86  14






	










Carthage Support is broken [1.5.3]





At least on my end, Carthage can not build the framework for the latest release 1.5.3.

The first error that came up was the missing shared scheme as described in #98. Unchecking and checking the box for the TPPDF scheme as described in this comment did fix the issue.

However the framework still does not build due to a missing .plist file. Here's the error message when running carthage build --verbose --platform "iOS" --no-skip-current TPPDF:

error: could not read data from '$(SRC_ROOT)/Carthage/Checkouts/TPPDF/Example/Pods/Target Support Files/TPPDF/TPPDF-Info.plist': The file “TPPDF-Info.plist” couldn’t be opened because there is no such file.


And indeed there is no such file; The actual directory contents are:

$ tree Target\ Support\ Files
                                                                                                                                                                                     
Target\ Support\ Files
├── Nimble
│   ├── Nimble-dummy.m
│   ├── Nimble-prefix.pch
│   ├── Nimble-umbrella.h
│   ├── Nimble.modulemap
│   └── Nimble.xcconfig
├── Pods-TPPDF_Example
│   ├── Pods-TPPDF_Example-acknowledgements.markdown
│   ├── Pods-TPPDF_Example-acknowledgements.plist
│   ├── Pods-TPPDF_Example-dummy.m
│   ├── Pods-TPPDF_Example-frameworks.sh
│   ├── Pods-TPPDF_Example-umbrella.h
│   ├── Pods-TPPDF_Example.debug.xcconfig
│   ├── Pods-TPPDF_Example.modulemap
│   └── Pods-TPPDF_Example.release.xcconfig
├── Pods-TPPDF_Tests
│   ├── Pods-TPPDF_Tests-acknowledgements.markdown
│   ├── Pods-TPPDF_Tests-acknowledgements.plist
│   ├── Pods-TPPDF_Tests-dummy.m
│   ├── Pods-TPPDF_Tests-frameworks.sh
│   ├── Pods-TPPDF_Tests-umbrella.h
│   ├── Pods-TPPDF_Tests.debug.xcconfig
│   ├── Pods-TPPDF_Tests.modulemap
│   └── Pods-TPPDF_Tests.release.xcconfig
├── Quick
│   ├── Quick-dummy.m
│   ├── Quick-prefix.pch
│   ├── Quick-umbrella.h
│   ├── Quick.modulemap
│   └── Quick.xcconfig
└── TPPDF
    ├── TPPDF-dummy.m
    ├── TPPDF-prefix.pch
    ├── TPPDF-umbrella.h
    ├── TPPDF.modulemap
    └── TPPDF.xcconfig


Edit: 1.4.1 fails with the same error message (missing .plist file). But the shared TPPDF scheme is present after checkout.





opened by mbger  13






	










no shared framework schemes





Hi

I'm new to this and i got an Error, which i think a had somewhen before.
Could you please help me and fix this?
ERROR:
*** Skipped building TPPDF due to the error:
Dependency "TPPDF" has no shared framework schemes for any of the platforms: iOS
If you believe this to be an error, please file an issue with the maintainers at https://github.com/Techprimate/TPPDF/issues/new

THANX A LOT!!!!!
Reinhard

bug 




opened by reinhardjung  13






	










Image as NSTextAttachment gets lost





Hey. I try to have an image attached into the NSAttributedString but the image gets lost.

        let pdf = PDFGenerator(format: .a4)
        
        let typeDetails = NSMutableAttributedString()
        let attachment = NSTextAttachment()
        attachment.image = Img.checked
        attachment.bounds = CGRect(x: 0, y: 0, width: 10, height: 10)
        let attachmentStr = NSAttributedString(attachment: attachment)
        
        typeDetails.append( NSAttributedString(string: ">>>>>") )
        typeDetails.append(attachmentStr)
        typeDetails.append( NSAttributedString(string: "<<<<<") )
        pdf.addAttributedText(text: typeDetails)



I have tried several approaches as well as several images.

idea?

bug wontfix 




opened by davidseek  13






	










PDFTable Image Quality





Hello,

Thank you for this wonderful library. This is so helpful.

I just want to ask if would it be possible to control the image quality on the table? 'Cause right now it kinda blurry. I would like to remain the quality of the image as possible so it won't appear blurry. Thank you in advance for your help.





opened by yhelfronda  11






	










Table cells cut off at end of page





down vote
favorite

I posted this on stackoverflow, but I couldn't find a TPPDF tag to tag it with.

I'm having a problem with a table cell being cut off at the bottom of the page when using the TPPDF cocoapod in a swift 4 app for i-pad. Only part of the cell shows with no text

I'm creating a series of tables in my document. Because the column widths are variable I'm adding a new table for each row.

Is there a way to either prevent this from happening or to determine when to add a page break?


bug pending 




opened by ghost  11






	










Adding a header image and a PDFTable in the document header cuts off the top of the table






ℹ Please fill out this template when filing an issue.
All lines beginning with an ℹ symbol instruct you with what info we expect. You can delete those lines once you've filled in the info.



What did you do?

I added a banner image to the document's .headerLeft and a table in the .headerLeft. The table has an Image to the left and Text to the right of the image.

document.add(.headerLeft, image: bannerPDFImage)

document.add(.headerLeft, table: headerTable)


What did you expect to happen?

I expected to see the full image and text beneath the banner image. Instead, there's a gap between the banner image and table below, with the top of the table cut off.

What happened instead?


TPPDF Environment

TPPDF version: 2.5.3
Xcode version: 14.2
Swift version: 5.7

Demo Code / Project

From the TableExampleFactory.swift file:


//
//  TableExampleFactory.swift
//  TPPDF_Example
//
//  Created by Philip Niedertscheider on 16.12.19.
//  Copyright © 2022 techprimate GmbH. All rights reserved.
//

#if os(iOS)
import UIKit
#elseif os(macOS)
import AppKit
#endif

import TPPDF

class TableExampleFactory: ExampleFactory {

    func generateDocument() -> [PDFDocument] {
        let document = PDFDocument(format: .a4)

		let headerStyle = PDFTableStyleDefaults.none

		let headerTable = PDFTable(rows: 1, columns: 2)
		headerTable.widths = [0.1, 0.9]
		headerTable.style = headerStyle
		
		var tableContent : [[PDFTableContentable]] = [[PDFTableContentable]]()
		var rowContent : [PDFTableContentable] = [PDFTableContentable]()
		
		if #available(macOS 12.0, *) {

			let bannerImage = Image(named: "Business Logo Banner.jpg")
			if let bannerImage = bannerImage {
				let bannerPDFImage = PDFImage(image: bannerImage)
				document.add(.headerLeft, image: bannerPDFImage)
			}
			
			var formIcon = Image(systemSymbolName: "doc.plaintext", accessibilityDescription: "")
			formIcon?.resizingMode = .tile
			var config = NSImage.SymbolConfiguration(textStyle: .largeTitle,
													 scale: .large)
			config = config.applying(NSImage.SymbolConfiguration.preferringMulticolor())
			formIcon = formIcon?.withSymbolConfiguration(config)
			if let formIcon = formIcon {
				rowContent.append(formIcon)
			} else {
				rowContent.append("")
			}
			
			headerStyle.contentStyle = PDFTableCellStyle(
				
				borders: PDFTableCellBorders(left: PDFLineStyle(type: .none),
											 top: PDFLineStyle(type: .none),
											 right: PDFLineStyle(type: .none),
											 bottom: PDFLineStyle(type: .none)),
				
				font: Font.systemFont(ofSize: 28, weight: .light)
			)
			
			rowContent.append("Test Header Text Content")
			
			tableContent.append(rowContent)
			headerTable.content = tableContent
			headerTable.rows.allCellsAlignment = .left
			document.add(.headerLeft, table: headerTable)
			
		} else {
			// Fallback on earlier versions
		}

		
        // Create a table
        var table = PDFTable(rows: 34, columns: 4)

        // Tables can contain Strings, Numbers, Images or nil, in case you need an empty cell.
        // If you add a unknown content type, an assertion will be thrown and the rendering will stop.
        table.content = [
            [nil, "Name",      "Image",                        "Description"],
            [1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
            [2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
            [3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
            [4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
            [1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
            [2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
            [3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
            [4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
			[1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
			[2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
			[3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
			[4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
			[1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
			[2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
			[3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
			[4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
			[1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
			[2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
			[3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
			[4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
			[1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
			[2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
			[3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
			[4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
			[1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
			[2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
			[3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
			[4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],
			[1,   "Waterfall", Image(named: "Image-1.jpg")!, "Water flowing down stones."],
			[2,   "Forrest",   Image(named: "Image-2.jpg")!, "Sunlight shining through the leafs."],
			[3,   "Fireworks", Image(named: "Image-3.jpg")!, "Fireworks exploding into 100.000 stars"],
			[4,   "Fields",    Image(named: "Image-4.jpg")!, "Crops growing big and providing food."],

            [nil, nil,         nil,                            "Many beautiful places"]
        ]
        table.rows.allRowsAlignment = [.center, .left, .center, .right]

        // The widths of each column is proportional to the total width, set by a value between 0.0 and 1.0, representing percentage.

        table.widths = [
            0.1, 0.25, 0.35, 0.3
        ]

        // To speed up table styling, use a default and change it

        let style = PDFTableStyleDefaults.simple

        // Change standardized styles
        style.footerStyle = PDFTableCellStyle(
            colors: (
                fill: Color(red: 0.171875,
                              green: 0.2421875,
                              blue: 0.3125,
                              alpha: 1.0),
                text: Color.white
            ),
            borders: PDFTableCellBorders(left: PDFLineStyle(type: .full),
                                         top: PDFLineStyle(type: .full),
                                         right: PDFLineStyle(type: .full),
                                         bottom: PDFLineStyle(type: .full)),

            font: Font.systemFont(ofSize: 10)
        )

        // Simply set the amount of footer and header rows

        style.columnHeaderCount = 1
        style.footerCount = 1

        table.style = style

        // Style each cell individually
        table[1,1].style = PDFTableCellStyle(colors: (fill: Color.yellow, text: Color.black))

        // Set table padding and margin
        table.padding = 5.0
        table.margin = 10.0

        // In case of a linebreak during rendering we want to have table headers on each page.

        table.showHeadersOnEveryPage = true

        document.add(table: table)

        // Another table:

        table = PDFTable(rows: 50, columns: 4)
        table.widths = [0.1, 0.3, 0.3, 0.3]
        table.margin = 10
        table.padding = 10
        table.showHeadersOnEveryPage = false
        table.style.columnHeaderCount = 3

        for row in 0..<table.size.rows {
            table[row, 0].content = "\(row)".asTableContent
            for column in 1..<table.size.columns {
                table[row, column].content = "\(row),\(column)".asTableContent
            }
        }

        for i in stride(from: 3, to: 48, by: 3) {
            table[rows: i...(i + 2), column: 1].merge(with: PDFTableCell(content: Array(repeating: "\(i),1", count: 3).joined(separator: "\n").asTableContent,
                                                           alignment: .center))
        }
        for i in stride(from: 4, to: 47, by: 3) {
            table[rows: i...(i + 2), column: 2].merge(with: PDFTableCell(content: Array(repeating: "\(i),2", count: 3).joined(separator: "\n").asTableContent,
                                                           alignment: .center))
        }
        for i in stride(from: 5, to: 48, by: 3) {
            table[rows: i...(i + 2), column: 3].merge(with: PDFTableCell(content: Array(repeating: "\(i),3", count: 3).joined(separator: "\n").asTableContent,
                                                           alignment: .center))
        }

        table[rows: 0..<2, column: 2].merge()
        table[rows: 1..<3, column: 3].merge()

        document.add(table: table)

        return [document]
    }
}



and here's the banner image I added to the project for testing purposes.







opened by brendand  3






	










Image in header with 0 margins along with text in header with standard margins





What's the best way to get a header image to use up. the entire space of the header part of the page, ignoring the margins, while some text and a line separator in the header respects the margins?

It seems to work for the first page, but subsequent pages the image I'm adding is being indented.


I'm using the following code to set the margins to 0 and the indentation to whatever the user has specified.

let pdfImage = PDFImage(image: image)
document.add(headerPosition, image: pdfImage)
document.add(headerPosition, space: 20)
document.layout.margin = EdgeInsets(top: 0, left: 0, bottom: reportSettings.marginBottom, right: 0)
document.set(indent: reportSettings.marginLeft, left: true)
document.set(indent: reportSettings.marginRight, left: false)
document.set(.headerLeft, indent: reportSettings.marginLeft, left: true)
document.set(.headerLeft, indent: reportSettings.marginRight, left: false)
document.set(.footerLeft, indent: reportSettings.marginLeft, left: true)
document.set(.footerLeft, indent: reportSettings.marginRight, left: false)






opened by brendand  0






	










Footer separator line





I want to put a separator line at the top of the footer before the body of the footer. but the divider is not at the top, but at the bottom.
How should I do this?
Looking forward to your reply, thanks.

my code.
let line = PDFLineStyle.init(type: .full, color: .blue, width: 1.0)
document.addLineSeparator(.footerLeft, style: line)
document.add(.footerLeft, textObject: PDFSimpleText(text: "Footer Left"))

TPPDF Environment

TPPDF version: 2.3.5
Xcode version: 14.1
Swift version: 5.2

pending 




opened by peterhoucll  1






	










Display total page count in UI





How should the feature work?

Is it possible to get total amount of page and display in certain place (not only in footer, header, center etc.)?

What should it look like?

I am trying to add this amount of page above signature place, to be sure that user had signed the document with this page count. Here is a screenshot.


What happened instead?

I can only add page numeration in foster, header etc.

TPPDF Environment

TPPDF version: 2.3.5
Xcode version: 13.3.1
Swift version: 5

enhancement 




opened by tarasChernysh  3






	










Group doesn't fit inside section column





What did you do?

I created section with 2 column.
In right column we have group with images. In left - some text description.
I see that group of images does not fit to right column's width (you can see that group on screenshot below with purple background color).



What did you expect to happen?

Group fits to column's width.
I want to create something like here


What happened instead?

Group crosses column border

TPPDF Environment

TPPDF version: 2.3.5
Xcode version: 13.3.1
Swift version: 5

Demo Code / Project

func generateDocument() -> [PDFDocument] {
        let textualItem  = [
            "Hello",
            "World",
            "Hello worid!"
        ]
        
        let images = [
            Image(named: "Image-2.jpg")!,
            Image(named: "Image-2.jpg")!,
            Image(named: "Image-2.jpg")!,
            Image(named: "Image-2.jpg")!,
            Image(named: "Image-2.jpg")!
        ]
        
        let items = [
            RowItem(textItems: textualItem, images: images),
            RowItem(textItems: textualItem, images: images),
            RowItem(textItems: textualItem, images: images),
            RowItem(textItems: textualItem, images: images),
            RowItem(textItems: textualItem, images: images),
            RowItem(textItems: textualItem, images: images),
            RowItem(textItems: textualItem, images: images)
        ]
        
        let document = PDFDocument(format: .a4)
        
        for item in items {
            let leftColomn = PDFSectionColumn(width: 0.4)
            let size = CGSize(width: document.layout.bounds.width, height: 200)
            let path = PDFBezierPath(ref: CGRect(origin: .zero, size: size))
            path.move(to: PDFBezierPathVertex(position: .init(x: size.width, y: 0), anchor: .topRight))
            path.addLine(to: PDFBezierPathVertex(position: .init(x: size.width, y: size.height), anchor: .bottomRight))
            let shape = PDFDynamicGeometryShape(path: path, fillColor: .white, stroke: .init(type: .full, color: .gray, width: 1, radius: 0))
            let groupLeft = PDFGroup(
                allowsBreaks: true,
                backgroundColor: .white,
                backgroundImage: nil,
                backgroundShape: shape,
                outline: .none,
                padding: .init(top: 0, left: 0, bottom: 0, right: 0)
            )
            
            for nestedContent in item.textItems {
                groupLeft.add(.left, text: nestedContent)
            }
            groupLeft.add(space: 8)
            // setting color to clear allows to fit group to section colomn't width
            groupLeft.addLineSeparator(style: .init(type: .full, color: .clear, width: 1, radius: 0))
            leftColomn.add(group: groupLeft)
            
            // right colomn
            let rightColomn = PDFSectionColumn(width: 0.4)
             let imageGroup = PDFGroup(
                 allowsBreaks: false,
                 backgroundColor: .purple,
                 backgroundImage: nil,
                 backgroundShape: .none,
                 outline: .none,
             padding: EdgeInsets(top: 0, left: 8, bottom: 0, right: 0)
             )
             
             var images: [PDFImage] = []
             
            for image in item.images {
                let pdfImage = PDFImage(
                    image: image,
                    size: .init(width: 51, height: 51),
                    sizeFit: .widthHeight,
                    options: [.resize, .compress],
                    cornerRadius: 0
                )
                images.append(pdfImage)
             }
             
            imageGroup.add(space: 8)
            imageGroup.add(.left, imagesInRow: images, spacing: 2)
            imageGroup.add(space: 8)
            rightColomn.add(group: imageGroup)
            
            let section = PDFSection([leftColomn, rightColomn])
            section.columnMargin = 0
            document.add(section: section)
            document.addLineSeparator(style: .init(type: .full, color: .black, width: 1, radius: 0))
            document.add(space: 2)
        }
        
        return [document]
    }


struct RowItem {
    let textItems: [String]
    let images: [Image]
}



bug 




opened by tarasChernysh  1















Releases(2.4.0)




	



2.4.0(Dec 17, 2022)




	Added paper background colors (#244 by @audungk)
	Added name property to PDFPageFormat (#299 by @ptrkstr)


Source code(tar.gz)
Source code(zip)









	



2.3.5(Apr 11, 2021)




Fixed bugs:

	Fixed PDFList not calculating available content height correctly (#267)
	Removed PDFTable initializer size defaults (#269)


Closed issues:

	Issue #267
	Issue #269


Merged pull requests:

	PR #268 (by philprime)


Source code(tar.gz)
Source code(zip)









	



2.3.4(Mar 15, 2021)




Fixed bugs:

	Fixed table header position when activating showHeaderOnEveryPage (#222)


Closed issues:

	Issue #222


Merged pull requests:

	PR #264 (by Sgkhour)


Source code(tar.gz)
Source code(zip)









	



2.3.3(Jan 6, 2021)




Fixed bugs:

	Fixed empty pages between external documents (#247)
	Fixed total page count calculations (#248)


Closed issues:

	Issue #247
	Issue #248


Merged pull requests:

	Issue #258


Source code(tar.gz)
Source code(zip)









	



2.3.2(Dec 5, 2020)




Implemented enhancements:

	Added optional table cell splicing disabling (#205)


Fixed bugs:

	Fixed carthage version missing (#236)


Closed issues:

	Issue #205
	Issue #222
	Issue #236
	Issue #243
	Issue #249
	Issue #233


Merged pull requests:

	PR #223
	PR #252 [by lpeancovschi]
	PR #255


Source code(tar.gz)
Source code(zip)









	



2.3.1(Sep 23, 2020)




Fixed bugs:

	Fixed invalid US page formats (#225)


Closed issues:

	Issue #225


Merged pull requests:

	PR #226


Source code(tar.gz)
Source code(zip)









	



2.3.0(Jul 16, 2020)




Implemented enhancements:

	Removed deprecated functions
	Added CaseIterable to PDFPageFormat


Source code(tar.gz)
Source code(zip)









	



2.2.0(Jul 16, 2020)




Implemented enhancements:

	macOS Support!


Closed issues:

	Issue #193


Merged pull requests:

	PR #217


Source code(tar.gz)
Source code(zip)









	



2.1.2(Jun 27, 2020)




Fixed bugs:

	Height of image captions are now calcuated correctly (Issue #208)


Closed issues:

	Issue #208


Merged pull requests:

	PR #214 [by chrisgonzgonz]


Source code(tar.gz)
Source code(zip)









	



2.1.1(Jun 18, 2020)




Implemented enhancements:

	Added raw representable to PDFTableCellAlignment
	Added support for groups inside section columns


Fixed bugs:

	Fixed indentations inside sections


Source code(tar.gz)
Source code(zip)









	



2.1.0(Jun 18, 2020)




Implemented enhancements:

	Added raw representable values to PDFPageFormat
	Added raw representable type to PDFLineType
	Added constant none to PDFTableCellStyle and PDFTableCellBorders
	Added background color to PDFSectionColumn (Issue #122)


Fixed bugs:

	Added note to documentation about not reusing PDFSection instances (Issue #122)
	Added missing font and text color reset to generator


Closed issues:

	#73
	#122
	#204
	#197
	#189
	#186
	#184
	#183


Merged pull requests:

	#211


Source code(tar.gz)
Source code(zip)









	



2.0.1(May 31, 2020)




Implemented enhancements:

	Removed JSON representation
	Added deprecation for table.generateCells


Fixed bugs:

	Missing page break after space which overlaps page end (#204)


Closed issues:

Source code(tar.gz)
Source code(zip)









	



2.0.0(May 19, 2020)




Implemented enhancements:

	Table Merging
	Swift Package Manager Support
	Hyperlinks in texts


Fixed bugs:

	External document including empty pages


Closed issues:

	#41
	#86
	#148
	#178
	#179
	#182
	#183
	#184
	#185
	#186
	#196
	#197


Merged pull requests:

	#181


Source code(tar.gz)
Source code(zip)









	



1.6.0(May 19, 2020)




Implemented enhancements:

	Added progress reporting using iOS internal Foundation.Progress (Issue #155)
	Added a better test example experience
	Added support to embed external PDF document (Issue #31)
	Added clickable URL support for images (Issue #170)
	Added support for NSAttributedString link attributes (Issue #71)
	Added subscript range access to PDFTable and deprecated PDFTable.setCellStyle


Fixed bugs:

	Fixed TravisCI configuration


Closed issues:

	#155
	#31
	#170
	#71


Merged pull requests:

	#171
	#172
	#174
	#177


Source code(tar.gz)
Source code(zip)









	



1.5.4(Dec 11, 2019)




Implemented enhancements:

	Fixed carthage support once again


Source code(tar.gz)
Source code(zip)









	



1.5.3(Dec 11, 2019)




Implemented enhancements:

	Fixed padding in groups


Source code(tar.gz)
Source code(zip)









	



1.5.2(Dec 11, 2019)




Implemented enhancements:

	Added group breaking


Source code(tar.gz)
Source code(zip)









	



1.5.1(Dec 11, 2019)




Implemented enhancements:

	Added merge/combining of multiple documents (Issue #67)


Closed issues:

	#67


Source code(tar.gz)
Source code(zip)









	



1.5.0(Dec 11, 2019)




Implemented enhancements:

	Changed framework methods to be "more Swift(y)"
	Added groups
	Added dynamic shapes for group background
	Added column with automatic wrapping (Issue #113)
	Added document wide text styles (Issue #57)
	Added automatic table of content based on text styles (Issue #58)


Fixed bugs:

	Fixed line separator in header and footer (Issue #88)
	Fixed image in footer layout calcuations (Issue #132)


Closed issues:

	#9
	#57
	#58
	#88
	#113
	#118
	#127
	#132
	#136
	#137
	#138


Source code(tar.gz)
Source code(zip)









	



1.4.1(Jun 6, 2019)




Fixed bugs:

	Carthage missing shared scheme (#135)


Closed issues:

	#135


Source code(tar.gz)
Source code(zip)









	



1.4.0(May 14, 2019)




Implemented enhancements:

	Added rounded corner clipping to images (#123)
	Added Swift 5 support


Fixed bugs:

	Line separator skewed (#128)


Closed issues:

	#123
	#125
	#128


Source code(tar.gz)
Source code(zip)









	



1.3.3(May 14, 2019)




Implemented enhancements:

	Changed accessibility of PDFGenerator


Closed issues:

	#101
	#103
	#108
	#109
	#111
	#113
	#114


Source code(tar.gz)
Source code(zip)









	



1.3.2(May 14, 2019)




Implemented enhancements:

	Changed accessor methods of PDFPageFormat to be publicly accessible.
	Added public accessor method to PDFPageLayout


Closed issues:

	Issue #11
	Issue #111


Merged pull requests:

	PR #106 [by protspace]


Source code(tar.gz)
Source code(zip)









	



1.3.1(May 14, 2019)




Fixed bugs:

	Issue #98


1.3.0 (2018-10-03)

Full Changelog

Implemented enhancements:

	Support for Swift 4.2


Merged pull requests:

	PR #94 [by techprimate-phil]


Source code(tar.gz)
Source code(zip)









	



1.3.0(May 14, 2019)




Implemented enhancements:

	Support for Swift 4.2


Merged pull requests:

	PR #94 [by techprimate-phil]


Source code(tar.gz)
Source code(zip)









	



1.2.1(May 14, 2019)




Merged pull requests:

	PR #82 [by snoop168]


Source code(tar.gz)
Source code(zip)









	



1.2.0(May 14, 2019)




Implemented enhancements:

	Added options to PDFImage, allowing more precise control about resizing and compression.
	Improvements to internal image resizing and compression methods.


Closed issues:

	Issue #77
	Issue #78


Source code(tar.gz)
Source code(zip)























Owner







techprimate











 GitHub 
 https://techprimate.github.io/TPPDF






A Static Library to be embedded on iOS applications to display pdf documents derived from Fast PDF

FastPdfKit This repository contains the FastPdfKit iOS library with some sample projects. FastPdfKit is a library that let you show pdf documents in i





 1.2k  Dec 22, 2022






A simple generator of PDF written in Swift. 

Features | Requirements | Installation | Usage | Communication | LICENSE PDFGenerator PDFGenerator is a simple PDF generator that generates with UIVie





 712  Dec 29, 2022






An iOS PDF viewer and annotator written in Swift that can be embedded into any application.

Requirements iOS 9 or above Xcode 8 or above Swift 3.0 Note This project is still in early stages. Right now the PDF reader works both programmaticall





 269  Dec 11, 2022






PDF Reader Core for iOS

PDF Reader Core for iOS This project is no longer supported or maintained. It is only here for historical reasons. Please see the UXReader PDF Framewo





 4.3k  Jan 6, 2023






Small utility to import PDF slides as vector images into Keynote for iOS.

Small utility to import PDF files into Keynote for iOS. This utility is especially helpful when presenting slideshows created by LaTeX





 6  Jun 14, 2022






Draw Week Time Table on PDF using PDFKit in iOS Swift

DrawPDFTimeTable Draw Week Time Table on PDF using PDFKit in iOS Swift. Image Info This is the pdf of time table drawn using PDFKit in iOS Swift with 





 6  Nov 22, 2022






SimplePDF is a wrapper of UIGraphics PDF context written in Swift.

SimplePDF is a wrapper of UIGraphics PDF context written in Swift. You can: add texts, images, spaces and lines, table set up page layout, adjust cont





 238  Dec 29, 2022






PDF generator using UIViews or UIViews with an associated XIB

Description Create UIView objects using any method you like, including interface builder with Auto-layout and size classes enabled. Then generate a PD





 34  Dec 17, 2022






Generate beautiful .pdf Files from xib

Description The Library generates a PDF directly from interface builder with Auto-layouted views! Swift Version of UIView_2_PDF. Installation Download





 16  Dec 17, 2022






UIImage PDF extensions.

UIImagePlusPDF UIImage extensions to use PDF files. Using UIImagePlusPDF you can avoid a lot png images files (1x, 2x, 3x sizes) and simply replace ea





 35  Jan 4, 2023






Estrutura Simples para Navegacao Web e Download PDF

Download-PDF-WebView Projeto desenvolvido em Swift com a função de criar uma estrutura simples para navegação Web em seu Aplicativo, permitindo a visu





 1  Nov 30, 2021






PdfBuilder: a swift library made to make creation of the Pdf file from code simpler

PdfBuilder PdfBuilder is a swift library made to make creation of the Pdf file f





 4  Jul 22, 2022






Mephisto - A command line tool to convert Comic Book Zip archives to PDF and share them over AirDrop

mephisto A command line tool written in Swift to convert Comic Book Zip archives





 0  Feb 7, 2022






Swift package that uses WebKit to render PDF files from URLs 

Swift package for generating a PDF file from a URL (rendered by WebKit)





 1  Feb 25, 2022






PLHKit: A Swift DSL for Rendering and creating PDF Files.

PLHKit PLH is a tribute to Portsaid Light House, Port Said Lighthouse was the first building in the world created with reinforced concrete. ?? PLHKit 





 10  Sep 2, 2022






About PDFKit learning project on iOS 11, Like iBooks.app.

iBook About PDFKit learning project on iOS 11, Like iBooks.app. 书库 书库页面获取PDF相关数据, 可以通过KVC获取。 PDF书名 if let title = documentAttributes["Title"] as? Stri





 31  Sep 15, 2022






📚 A Swift ePub reader and parser framework for iOS.

FolioReaderKit is an ePub reader and parser framework for iOS written in Swift. Features ePub 2 and ePub 3 support Custom Fonts Custom Text Size Text 





 2.5k  Jan 8, 2023






TPPDF is a simple-to-use PDF builder for iOS

TPPDF is a fast PDF builder for iOS & macOS using simple commands to create advanced documents! Created and maintained by Philip Niedertscheider and a





 581  Dec 29, 2022






A Static Library to be embedded on iOS applications to display pdf documents derived from Fast PDF

FastPdfKit This repository contains the FastPdfKit iOS library with some sample projects. FastPdfKit is a library that let you show pdf documents in i





 1.2k  Dec 22, 2022






A simple generator of PDF written in Swift. 

Features | Requirements | Installation | Usage | Communication | LICENSE PDFGenerator PDFGenerator is a simple PDF generator that generates with UIVie





 712  Dec 29, 2022






















2022.swiftobc




















